

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 455: Problem Set 7

Semester/Year:	2/2016
----------------	--------

Course Title: Mobile Communications

Instructor: Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)

Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs455/

Due date: Not Due

Questions

1. Select the terms (provided at the end of the problem) to complete the following description of OFDM systems:

Wireless systems suffer from	_ problem. An important techniq	jue that
works well in wireless systems is OFDM. The g	eneral idea is to	_ the
symbol or bit time so that it is	$_$ compared with the channel de	elay
spread. To do this, we separate the original da	ta stream into multiple parallel	
substreams and transmit the substreams via d	ifferent carrier frequencies, crea	ıting
parallel subchannels. This is called	In such direct implementa	ation,
there are two new problems to solve: bandwi	dth inefficiency and complexity c	of the
transceivers. The inefficient use of bandwidth	is caused by the need of	
between adjacent subchannels. Bandwidth ef	ficiency can be improved by utiliz	zing
The computational complex	kity of the transceivers is solved b	y the use
of		

Here are the terms to use. Some term(s) is/are not used.

- FFT and IFFT
- FDM
- multipath fading
- local oscillators
- guard bands
- guard times

- reduce
- increase
- small
- large
- spectral efficiency
- orthogonality

- 2. In this question, we will consider an OFDM system in discrete time. The channel is characterized by $\mathbf{h} = \begin{bmatrix} 2 & -1 \end{bmatrix}$. We would like to transmit a stream
 - $\begin{bmatrix} 1 & -1 & 2 & 1 & -1 & 2 & 1 & 2 \end{bmatrix}$ of data across this channel using OFDM. For simplicity, we will assume that there is no noise. Let N=4 be the length of each OFDM symbol.
 - a. Find the transmitted vector \mathbf{x} . (Apply IFFT with scaling by \sqrt{N} . Then add cyclic prefix.) To reduce the overhead, the cyclic prefix should be as short as possible.
 - b. The received vector is $\mathbf{y} = \mathbf{x} * \mathbf{h}$. (Note that this is a regular convolution.) Find \mathbf{y} .
 - c. Find \mathbf{H} which is the FFT of the zero-padded \mathbf{h} .
 - d. Remove the "irrelevant parts" from \mathbf{y} . Then apply FFT with scaling by $^1/\sqrt{N}$. Finally, use the corresponding property in frequency domain of the circular convolution (in time) for DFT to recover the original data from \mathbf{y} .