

Sirindhorn International Institute of Technology

Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 455: Problem Set 5

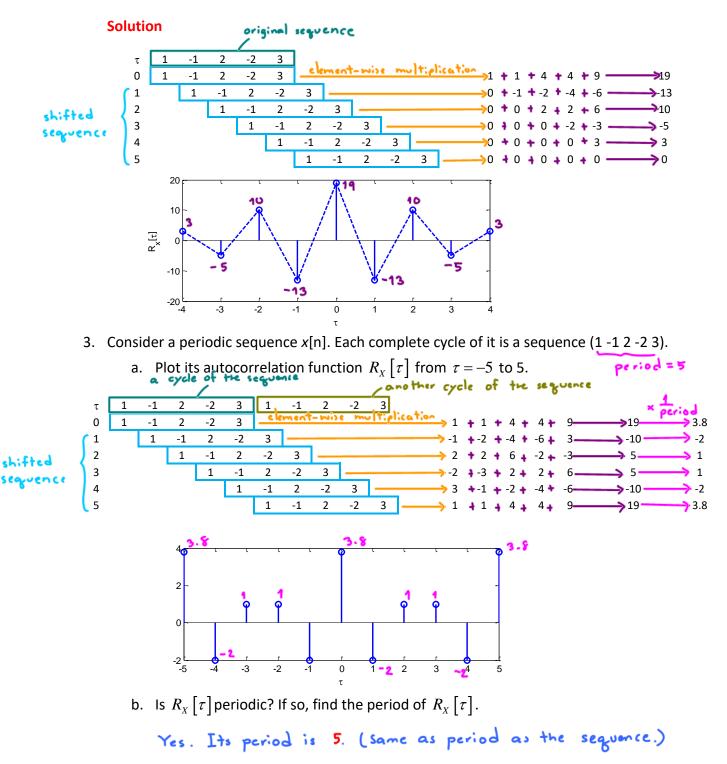
Semester/Year: 2/2016

Course Title:Mobile CommunicationsInstructor:Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)Course Web Site:http://www2.siit.tu.ac.th/prapun/ecs455/

Due date: April 28, 2017 (Friday), 4:30 PM

Instructions

- 1. (1 pt) Write your first name and the last three digits of your student ID on the upper-right corner of every submitted sheet.
- 2. (1 pt) For each part, write your explanation/derivation and answer in the space provided.
- 3. (8 pt) It is important that you try to solve all non-optional problems.
- 4. Late submission will be heavily penalized.


Questions

 Consider Global System for Mobile (GSM), which is a TDMA/FDD system that uses 25 MHz for the forward link, which is broken into radio channels of 200 kHz. If 8 speech channels are supported on a single radio channel, and if no guard band is assumed, find the number of simultaneous users that can be accommodated in GSM.

Solution

$$\frac{25 \times 10^6}{200 \times 10^3} \times 8 = 1000$$
 simultaneous users.

2. Consider a sequence x[n] = (1 - 1 2 - 2 3). Plot its autocorrelation function $R_x[\tau]$ from $\tau = -4$ to 4.

- 4. Draw the complete state diagrams for linear feedback shift registers (LFSRs) using the following polynomials. Does either LFSR generate an m-sequence?
 - a. $1+x^2+x^5$ b. $1+x+x^2+x^5$
 - c. $1 + x + x^2 + x^4 + x^5$

Solution

(a) $1+x^2+x^5$	(b) $1 + x + x^2 + x^5$	(c) $1 + x + x^2 + x^4 + x^5$
(a) The LFSR will cycle	(b) The LFSR will cycle	(c) The LFSR will cycle
through the following	through one of the cycles of	through the following states:
sequence of states:	states below. The initial state	
	determine which cycle it will	
	go through.	011005
10101	Cycle #1:	
	11000	00101
01110		
	11110	
00011		
	00100	111105
11111		
	Cruele #2:	
	Cycle #2:	01101
01100		
010115	101005	
		01110
	00110	
000105	Cycle #3:	
	00101	
	10111	
	Cycle #4:	
	Cycle #5:	

The polynomial $1+x^2+x^5$ and $1+x+x^2+x^4+x^5$ from part (a) and (c) generate msequences. (Their states go thorough cycle of size 2⁵-1)

5. Use any resource, find <u>all</u> primitive polynomials of degree 6 over GF(2). Indicate your reference.

Solution

Primitive Polynomials		
$x^6 + x^1 + 1$		
$x^6 + x^5 + x^2 + x^1 + 1$		
$x^6 + x^5 + x^3 + x^2 + 1$		
$x^6 + x^4 + x^3 + x^1 + 1$		
$x^6 + x^5 + x^4 + x^1 + 1$		
$x^{6} + x^{5} + 1$		

Source: http://www.theory.cs.uvic.ca/~cos/gen/poly.html