Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 455: Problem Set 5

Semester/Year: 2/2016
Course Title: Mobile Communications
Instructor: Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs455/
Due date: April 28, 2017 (Friday), 4:30 PM

Instructions

1. (1 pt) Write your first name and the last three digits of your student ID on the upper-right corner of every submitted sheet.
2. (1 pt) For each part, write your explanation/derivation and answer in the space provided.
3. $(8 \mathrm{pt})$ It is important that you try to solve all non-optional problems.
4. Late submission will be heavily penalized.

Questions

1. Consider Global System for Mobile (GSM), which is a TDMA/FDD system that uses 25 MHz for the forward link, which is broken into radio channels of 200 kHz . If 8 speech channels are supported on a single radio channel, and if no guard band is assumed, find the number of simultaneous users that can be accommodated in GSM.
2. Consider a sequence $x[\mathrm{n}]=\left(1-12-23\right.$). Plot its autocorrelation function $R_{X}[\tau]$ from $\tau=-4$ to 4.
3. Consider a periodic sequence $x[n]$. Each complete cycle of it is a sequence (1-1 2-2 3).
a. Plot its autocorrelation function $R_{x}[\tau]$ from $\tau=-5$ to 5 .
b. Is $R_{x}[\tau]$ periodic? If so, find the period of $R_{x}[\tau]$.
4. Draw the complete state diagrams for linear feedback shift registers (LFSRs) using the following polynomials. Does either LFSR generate an m-sequence?
a. $1+x^{2}+x^{5}$
b. $1+x+x^{2}+x^{5}$
c. $1+x+x^{2}+x^{4}+x^{5}$
5. Use any resource, find all primitive polynomials of degree 6 over GF(2). Indicate your reference.
