\qquad

| ECS 452: Digital Communication Systems | 2019/2 |
| :---: | :---: | :---: |
| HW 8- Due: Not Due | |

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. Consider a convolutional encoder whose trellis diagram is given in Figure 8.1.

Figure 8.1: State diagram for a convolutional encoder
(a) Find the code rate
(b) Suppose the data bits (message) are $\underline{\mathbf{b}}=[0100101]$. Find the corresponding codeword x.
(c) Find the data vector $\underline{\mathbf{b}}$ which gives the codeword $\underline{\mathbf{x}}=[001110111110]$.
(d) Suppose that we observe $\underline{\mathbf{y}}=[001110000101]$ at the input of the minimum distance decoder. Explain why we can easily find the decoded codeword $\underline{\hat{\mathbf{x}}}$ and the decoded message $\underline{\hat{\mathbf{b}}}$ without applying the Viterbi algorithm.
(e) Suppose that we observe $\underline{\mathbf{y}}=[010101111110]$ at the input of the minimum distance decoder. Use Viterbi algorithm to find the decoded codeword $\underline{\hat{\mathbf{x}}}$ and the decoded message $\underline{\hat{\mathbf{b}}}$. Show your work on Figure 8.2 below.

Figure 8.2: State diagram for a convolutional encoder
Make sure that all the running (cumulative) path metric are shown and the discarded branches are indicated at every steps.

Problem 2. Consider four vectors:

$$
\mathbf{v}^{(1)}=\left(\begin{array}{c}
+1 \\
-1 \\
+1 \\
0 \\
-1
\end{array}\right), \mathbf{v}^{(2)}=\left(\begin{array}{c}
+1 \\
+1 \\
0 \\
+1 \\
0
\end{array}\right), \mathbf{v}^{(3)}=\left(\begin{array}{c}
+2 \\
0 \\
+1 \\
+1 \\
-1
\end{array}\right), \text { and } \mathbf{v}^{(4)}=\left(\begin{array}{c}
+3 \\
+1 \\
+1 \\
+2 \\
-1
\end{array}\right) .
$$

Now, consider two vectors:

$$
\mathbf{e}^{(1)}=\frac{1}{2}\left(\begin{array}{c}
+1 \\
-1 \\
+1 \\
0 \\
-1
\end{array}\right), \text { and } \mathbf{e}^{(2)}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
0 \\
1 \\
0
\end{array}\right)
$$

(a) Show that the two vectors $\mathbf{e}^{(1)}$ and $\mathbf{e}^{(2)}$ are orthonormal.
(b) Find the corresponding vectors $\mathbf{c}^{(1)}, \mathbf{c}^{(2)}, \mathbf{c}^{(3)}$, and $\mathbf{c}^{(4)}$ that represent $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}$, and $\mathbf{v}^{(4)}$ in the new coordinate system defined by vectors $\mathbf{e}^{(1)}$ and $\mathbf{e}^{(2)}$.

Problem 3. Consider the two signals $s_{1}(t)$ and $s_{2}(t)$ shown in Figure 8.4. Note that V and T_{b} are some positive constants. Your answers should be given in terms of them.

Figure 8.4: Signal set for Problem 3
(a) Find the energy in each signal.
(b) Find the two vectors that represent the two waveforms $s_{1}(t)$ and $s_{2}(t)$ in the new (signal) space with respect to the following orthonormal vectors:

$$
\phi_{1}(t)=\left\{\begin{array}{ll}
\frac{1}{\sqrt{T_{b}}}, & 0 \leq t \leq \frac{T_{b}}{2}, \\
-\frac{1}{\sqrt{T_{b}}}, & \frac{T_{b}}{2}<t<T_{b}, \\
0, & \text { otherwise }
\end{array} \quad \phi_{2}(t)= \begin{cases}\frac{1}{\sqrt{T_{b}}}, & 0 \leq t \leq T_{b}, \\
0, & \text { otherwise }\end{cases}\right.
$$

Also draw the corresponding constellation.

Problem 4. Consider the two signals $s_{1}(t)$ and $s_{2}(t)$ shown in Figure 8.5. Note that V, α and T_{b} are some positive constants.

Figure 8.5: Signal set for Problem 4
(a) Find the energy in each signal.
(b) Find $\left\langle s_{1}(t), s_{2}(t)\right\rangle$.
(c) Consider two orthonormal vectors:
$\phi_{1}(t)=\left\{\begin{array}{ll}\frac{1}{\sqrt{T_{b}}}, & 0<t<T_{b}, \\ 0, & \text { otherwise },\end{array} \quad\right.$ and $\quad \phi_{2}(t)=\frac{1}{\sqrt{\alpha\left(1-\frac{\alpha}{T_{b}}\right)}} \times \begin{cases}1-\frac{\alpha}{T_{b}} & 0<t \leq \alpha, \\ -\frac{\alpha}{T_{b}}, & \alpha<t<T_{b}, \\ 0, & \text { otherwise }\end{cases}$
(i) Check that they are orthonormal.
(ii) Find the two vectors $\mathbf{s}^{(1)}$ and $\mathbf{s}^{(2)}$ that represent the two waveforms $s_{1}(t)$ and $s_{2}(t)$ in the new (signal) space with respect to the given orthonormal vectors.
(iii) Draw the corresponding constellation when $\alpha=\frac{T_{b}}{4}$.
(iv) Draw $\mathbf{s}^{(2)}$ when $\alpha=\frac{k}{10} T_{b}$ where $k=1,2, \ldots, 9$.

Extra Question

Here is an optional question for those who want more practice.
Problem 5. Consider a convolutional code generated by the encoder shown in Figure 8.3. Suppose that we observe $\underline{\mathbf{y}}=[110111000110]$ at the input of the minimum distance decoder. Use Viterbi algorithm to find the decoded codeword $\underline{\hat{\mathbf{x}}}$ and the decoded message $\underline{\hat{\mathbf{b}}}$. Caution: The trellis diagram is not the same as the one used in Problem 1 .

Figure 8.3: Encoder for Problem 5

Problem 6. Suppose $s_{1}(t)=\operatorname{sinc}(5 t)$ and $s_{2}(t)=\operatorname{sinc}(7 t)$. Note that in this class, we define $\operatorname{sinc}(x)=\frac{\sin x}{x}$. Find
(a) $E_{s_{1}}$,
(b) $E_{s_{2}}$, and
(c) $\left\langle s_{1}(t), s_{2}(t)\right\rangle$.

Hint: Use Parseval's theorem to evaluate the above quantities in the frequency domain. (Review: See 2.43 on p. 22 and Example 2.44 on p. 23 of ECS332 2019 lecture notes and Problem 6 in ECS332 2019 HW4.)

Problem 7. Prove the following facts with the help of Fourier transform. (Hint: inner product in the frequency domain, Parseval's theorem)
(a) The energy of $p(t)=g(t) \cos \left(2 \pi f_{c} t+\phi\right)$ is $E_{g} / 2$.
(b) $g(t) \cos \left(2 \pi f_{c} t\right)$ and $-g(t) \sin \left(2 \pi f_{c} t\right)$ are orthogonal.

Is there any condition(s) on $g(t)$ that we need to assume?

