\qquad
\qquad
ECS 452: Digital Communication Systems
HW 6- Due:April 7, 4 PM
Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 6 pages.
(b) (1 pt) Work and write your answers directly on the provided file (not on other blank sheet(s) of paper).
(c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided on the upper-right corner of this page. Furthermore, your file name should start with your 10-digit student ID, followed by a space, the course code, a space, and the assignment number: "5565242231 452 HW6.pdf"
(d) $(8 \mathrm{pt})$ Try to solve all non-optional problems.
(e) Late submission will be heavily penalized.
(f) Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Problem 1. Consider a single-parity-check linear code. For each of the data block below, find the corresponding codeword.

$\underline{\mathbf{b}}$	\ldots
010	$\mathbf{0 1 0}$
111	111
001	0011

We simply add one bit to the end to make even number of 1 s in the codeword. Note that we use even parity because the code is assumed to be linear.

(a) $\mathcal{C}=\{\overline{0} 00, \overline{001}, \overline{100}, \overline{101}\}$

©	$s^{(3)}$	$s^{(4)}$
$s^{(2)}$	$\underline{c}^{(4)}$	$c^{(3)}$
$s^{(3)}$		$c^{(2)}$

(b) $\mathcal{C}=\{000,100,110,111\}$

No. $100+110=010 \in C$
We have shown in class that this checking can be performed in two steps:

1) check that the zero codeword is ir
the collection codewords in the collection is still inside the collection.
2) check that the sum of any distict non-zero codewords in the collection is still inside the collection
(c) $\mathcal{C}=\{001,100,101\}$

No. 000 is not a member. Any linear code must contains the zero codeword.

Problem 3. Consider a block code whose generator matrix is
(a) Find the dimension k of this code. $n=6$

$$
k=3
$$

$$
\mathbf{G}=\underbrace{\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]}_{\text {his code. } \boldsymbol{n}=6}\} \boldsymbol{k}=\mathbf{3}
$$

(b) Find its code rate.

$$
=\frac{k}{n}=\frac{3}{6}
$$

(c) Suppose the message is $\underline{\mathbf{b}}=[101]$. Find the corresponding codeword $\underline{\mathbf{x}}$.

There are several equivalent ways to approach this problem.

1) We can simply use

$$
\underline{x}=\underline{\underline{b}} \underline{n}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \text {. }
$$

(d) For each of the following vectors, indicate whether it is a valid codeword for this code.
$\underline{x}=\underline{b} G=\left[b_{1} b_{2} b_{3}\right] G=\left[b_{1}, b_{2}, b_{3}, b_{1} \oplus b_{3}, b_{2} \oplus b_{3}, b_{1}+b_{2}\right] \leftarrow$ All codeword, must satisty
(i) 011101$\} b_{1} \oplus b_{2}=0 \oplus 1=1$ \{All of these agree with the bits

In particular. we know that $\left.b_{1} b_{2} b_{3}=b_{2} \oplus b_{3}=1+1=0\right\}$ in the given vector. if it is a valid codeword, the first three bits must be b. (ii) $[110111]=$ and $\underline{b}=[011]$

Problem 4. Consider a block code whose codewords are generated by $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}$ where $\underline{\mathbf{b}}$ is the data block and

$$
\mathbf{G}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Let the row vector $\underline{\mathbf{g}}^{(i)}$ represents the i th row of \mathbf{G}. Observe that $\underline{\mathbf{g}}^{(3)}=\underline{\mathbf{g}}^{(1)} \oplus \underline{\mathbf{g}}^{(2)}$. Why is this bad?

$$
\rightarrow \text { Both give } \subseteq=g^{(3)} \text {. }
$$

The codewords for 110 and 001 are the same. So, even without bit corruption in the observed vector, the receiver can't distinguish these two cases.

Remark: There are three rows in the generator matrix; hence, $\mathrm{k}=3$ and each message block has 3 bits. For no ambiguity at the receiver, we should have $2^{3}=8$ distinct codewords. The observation above shows that some different message blocks map to the same codeword. In fact, this code has only 4 distinct codewords. 6-2

$$
g^{(1)}, 9^{(2)}, g^{(3)}, 0
$$

\underline{b}			\underline{c}				
0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	0
0	1	0	0	1	0	1	1
0	1	1	1	0	1	0	1
1	0	0	1	0	1	0	1
1	0	1	0	1	0	1	1
1	1	0	1	1	1	1	0
1	1	1	0	0	0	0	0

Problem 5. Consider each of the block codes whose codebooks are provided below. For each code, is the code a linear code that is generated by a generator matrix? If yes, find the corresponding generator matrix. If no, provide a counter-example to support your conclusion.

We read the structure of the bits in the codewords:

$$
\begin{array}{ll}
c_{1}=b_{1} \oplus b_{2} & c_{3}=b_{1} \oplus b_{2} \oplus b_{3} \\
c_{2}=b_{1} & c_{4}=b_{3} \\
& c_{3}=b_{2}
\end{array}
$$

We then check the rest of each column whether all the bits satisfy the above structure or not.

Here, all the bits satisfy the above structure.

> Yes, it is a linear code.
$G=\left[\begin{array}{l}g^{(1)} \\ g^{(2)} \\ g^{(1)}\end{array}\right]=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$
(b)

We read the structure of the bits in the codewords:

This part is not needed for the second conclusion below. We have already shown that the code is not linear. So, it can not be generated by any generator matrix.

$$
\begin{array}{ll}
c_{1}=b_{1} \oplus b_{2} & c_{3}=b_{1} \oplus b_{2} \oplus b_{3} \\
c_{2}=b_{1} & c_{4}=b_{3} \\
& c_{3}=b_{2}
\end{array}
$$

We then check the rest of each column whether all the bits satisfy the above structure or not.

This bit does not satisfy $c_{3}=b_{1} \oplus b_{2} \oplus b_{3}$.
The corresponding message is 101.

$$
\begin{aligned}
& \text { So, try } g^{(1)} \oplus g^{(3)} \text { which gives } \underbrace{111010}_{\text {not a codeword. }}
\end{aligned}
$$

Furthermore, if the code is produced by a generator matrix G, then, when

$$
\underline{b}^{(1)}=\left[\begin{array}{lll}
100
\end{array}\right] \text { and } \underline{b}^{(2)}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] .
$$

The corresponding codeword for $\underline{b}^{(1)}+2^{(2)}$ must be

So, there is no generator matrix that can generate this code.

Problem 6. Consider the following encoding for a systematic linear block code:

- The bit positions that are powers of $2(1,2,4,8,16$, etc. $)$ are check bits.
- The rest (3, 5, 6, 7, 9, etc.) are filled up with the k data bits.

This is a general statement about [systematic linear block code.

- Each check bit forces the parity of some collection of bits, including itself, to be even.
- To see which check bits the data bit in position i contributes to, rewrite i as a sum of powers of 2 . A bit is checked by just those check bits occurring in its expansion.

We will consider the case when the codeword's length $n=7$.
(a) How many bits are check bits?

Hint: How many bit positions are powers of 2 ?
There are $n=7$ bits in each codeword.
The check bits are defined to be the bits whose positions are powers of 2 .
Among the possible positions $(1,2,3, \ldots, 7)$, three positions $2^{0}=1,2^{1}=2,2^{2}=4$ are powers of 2 .
So, there are three check bits. (Note that $k=7-3=4$ bits) position position position of P_{3}
(b) Find the generator matrix \mathbf{G} for this code. of p_{1} of p_{2}

Let p_{1}, p_{2}, p_{3} be the check bits and For example, d_{1} is in the
$d_{1}, d_{2}, d_{3}, d_{4} b_{e}$ the data bits positions that are powers of $2 \quad i=3^{\text {rd }}$ position.

Than each codeword is of the form $\underline{x}=\left[x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}\right]=2+2+0$. wed in the
Following the encoding $\quad=\left[\begin{array}{ccccccc}p_{1} & p_{2} & d_{1} & p_{3} & d_{2} & d_{3} & d_{4}\end{array}\right] \rightarrow p_{1}(1) d_{1}(1) d_{2}(1) d_{4}=0 \ldots(1) \quad$ eq. of p_{1} and p_{2}
instructions, we express $\quad 011 \circ 011 \rightarrow P_{2} \odot d_{1}\left(\uparrow d_{2}\left(\uparrow d_{4}=0 \ldots\right.\right.$ (2)
the position values in binary $\quad 00011111 \rightarrow P_{3}(\uparrow) d_{2}() d_{3}\left(9 d_{4}=0\right.$. (3)
(c) Find the corresponding parity check matrix \mathbf{H}.

$$
G=\left[\begin{array}{llllll}
(1) & 1 & 1 & 0 & 0 & 0 \\
1 & 0 \\
1 & 0 & 0 & \frac{1}{1} & 1 & 0 \\
0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
(1) & 1 & 0 & = & 0 & 0
\end{array}\right] \Rightarrow H=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & (1) & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Extra Questions

Here are some optional questions for those who want more practice．
Problem 7 （Carlson and Crilly，2009，P13．2－1）．In mathematical analysis，a function $d(\underline{\mathbf{x}}, \underline{\mathbf{y}})$ is a＂true＂distance if it satisfies all of the following properties：
（i）positivity：$d(\underline{\mathbf{x}}, \underline{\mathbf{y}}) \geq 0$ with equality if and only if $\underline{\mathbf{x}}=\underline{\mathbf{y}}$
（ii）symmetry：$d(\underline{\mathbf{x}}, \underline{\mathbf{y}})=d(\underline{\mathbf{y}}, \underline{\mathbf{x}})$
（iii）triangle inequality：$d(\underline{\mathbf{x}}, \underline{\mathbf{z}}) \leq d(\underline{\mathbf{x}}, \underline{\mathbf{y}})+d(\underline{\mathbf{y}}, \underline{\mathbf{z}})$
Is the Hamming distance a＂true＂distance？（Prove or disprove）
Hint：For the triangle inequality，first consider the number of 1 s in $\underline{\mathbf{u}}, \underline{\mathbf{v}}$ ，and $\underline{\mathbf{u}} \bigoplus \underline{\mathbf{v}}$ and confirm that $d(\underline{\mathbf{u}}, \underline{\mathbf{v}}) \leq w(\underline{\mathbf{u}})+w(\underline{\mathbf{v}})$ ．Then，from this inequality，replace $\underline{\mathbf{u}}$ by $\underline{\mathbf{x}} \bigoplus \underline{\mathbf{y}}$ and $\underline{\mathbf{v}}$ by $\underline{\mathbf{y}} \oplus \underline{\mathbf{z}}$ ．First，by definition，we can write $d(\underline{\mu}, y)=w(\underset{\sim}{c}(\odot) x)$ ．

```
(i) Because d(\underline{x},\underline{y})\mathrm{ is the weight of the vector }\underline{x}\oplusyy
                                    which is simply counting $ts in 些田y,
    it is almay \geqslant0.
    Noxt, soppose \underline{x}=y.Then, \underline{x}\oplus\underline{y}=\underline{O}\mathrm{ and }d(\underline{x},\underline{y})=w(\underline{\underline{(})y)=w(0)=0}=0\mathrm{ .}
```



```
                a }1\mathrm{ in }\underline{x
                        d(\underline{x},\underline{y})=w(\underline{x}(\Psi)\underline{y})\geqslant1>0
        Therefore, d(\underline{E},\underline{y})=0\mathrm{ if and only if }\underline{\underline{E}=\underline{y}}\mathrm{ .}
```



```
    d(\underline{n},\underline{y})=w(\underline{~}\odot\underline{y})=w(y@\underline{u})=d(y,\underline{Q})
```

(iii) Triangle inequality
First we show that for any pair of vector and $\underline{\sim}$,
$d(\underline{w}, \underline{v}) \leq \omega(\underline{\mu})+\omega(\underline{v})$
Recall that $d(\underset{,}{ }, \underline{v}) \equiv w(\underline{\#}$ ©
and that the XOR operation will give a 1 if we have $1(9) 0$ or \circ (1) 1 .
Lat A be the set
of the poistions of
ss in \bar{z}
$|A|=\operatorname{wot}(\underline{U})$

Therefore, $w(\leqslant$ 国 $)=1 \quad 1 \leqslant w(\underline{L})+w(\underline{w}) \quad$ (by comparing the aves in
Now, lat $y=x(1) y$ and $\underline{y}=x$ ()ㅗㄹ
From the above inequality 5 we have

($\operatorname{In} G F(2), V \Phi Y=0$)
Hence, $d(\underline{x}, \underline{z}) \leq d(\underline{x}, \underline{y})+d(\underline{y}, \underline{z})$

Problem 8 (Carlson and Crilly, 2009, P13.2-2 and P13.2-3). Consider a block code. Suppose $\underline{\mathbf{x}}$ is the transmitted codeword and that \mathbf{y} is the vector that results when $\underline{\mathbf{x}}$ is received with $i>0$ bit errors. Use the triangle inequality for the Hamming distance to show that
(a) if the code has $d_{\text {min }} \geq \ell+1$ and if $i \leq \ell$, then the errors are detectable.

Recall that, to detect errors), we simply check whether the received vector y_{-}is a valid codeword. The errors in y are detectable iff y_{z} is not a valid codeword.

Consider any codeword $\leq \in C$ that is not x.

we have $d\left(y_{1}, \leq\right) \geqslant 1>0$. So, $y_{\text {_ }}$ cannot be the same as any code word in C.
(unless $y=\underline{e}$, in which cove, the is no error to detect.)
Hence, the errors in y - are detectable.
(b) if the code has $d_{\text {min }} \geq 2 t+1$ and if $i \leq t$, then the errors are correctable by the minimum distance decoder.

Consider any codeword $\leq \in C$ that is not re.

we have $d\left(y_{2}, \leq\right) \geqslant t+1>t$
However, $d(y, \underline{x})=w(\underline{e})=t$. so, y is closer to \underline{x} than any other valid codeword.
Hence, when y_{2} is observed, the min distance decoder will output <compat>e<compat>ᅳ correcting all the errors in y-.

