ECS 452: In-Class Exercise \# 12

Instructions

1. Separate into groups of no more than three students each. Only one submission is needed for each group.
2. [ENRE] Explanation is not required for this exercise
3. Do not panic.

Date: 10 / 3 / 2020	
Name	

Assume GF(2).

1. Calculate the following quantities:
a. $\quad 1 \oplus 1=0$
b. $\quad 0 \oplus 1 \oplus 1=(0 \oplus 1) \oplus 1=1 \oplus 1=0$
c. $1 \cdot 0=0$
d. $1 \cdot 0 \cdot 1=(1 \cdot 0) \cdot 1=0 \cdot 1=0$
e. $\quad\left[\begin{array}{lll}0 & 1 & 0\end{array}\right] \oplus\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0 \oplus 1 & 1 \oplus 1 & 0 \oplus 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$
f. $\quad\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right]=[(0 \cdot 1) \oplus(1 \cdot 1) \oplus(1 \cdot 0) \quad(0 \cdot 0) \oplus(1 \cdot 1) \oplus(1 \cdot 1)]=\left[\begin{array}{ll}0 \oplus 1 \oplus 0 & 0 \oplus 1 \oplus 1\end{array}\right]=\left[\begin{array}{ll}1 & 0\end{array}\right]$

Alternatively, multiplying by $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ means we simply add the last two rows of $\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right]$.
in the blanks:
2. Fill in the blanks:

$$
\begin{aligned}
& \text { Fill in the blanks: } \\
& \left.\begin{array}{lll}
{\left[\begin{array}{l}
- \\
-
\end{array}\right.} & -
\end{array}\right] \oplus\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \\
& {\left[\begin{array}{lll}
- & - & -
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]}
\end{aligned}
$$ If we define the "negative" of $\underline{\mathbf{b}}$ to be the vector that give $\underline{\mathbf{0}}$ when added to $\underline{\mathbf{b}}$. Here, in GF(2), we see that "negative" of $\underline{\mathbf{b}}$ is $\underline{\mathbf{b}}$ itself.

3. Consider a matrix \mathbf{G}. Suppose $\left[\begin{array}{ll}0 & 1\end{array}\right] \mathbf{G}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0\end{array}\right] \mathbf{G}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$. Find \mathbf{G}.

First, recall that

$$
[]_{m \times t}[\quad]_{t \times n}=[\quad]_{m \times n}
$$

Here, $m=1, t=2$, and $n=3$. So, \mathbf{G} is a 2×3 matrix.
Let's write $\boldsymbol{G}=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$. Then,

$$
\left[\begin{array}{ll}
0 & 1
\end{array}\right] \mathbf{G}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]=\left[\begin{array}{lll}
d & e & f
\end{array}\right],
$$

and

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{G}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]=\left[\begin{array}{lll}
a & b & c
\end{array}\right] .
$$

From the provided information, we can conclude that

$$
\left[\begin{array}{lll}
d & e & f
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] \text { and }\left[\begin{array}{lll}
a & b & c
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] .
$$

Therefore, $\mathbf{G}=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$.

ECS 452: In-Class Exercise \# 13

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former group after the midterm.
2. Only one submission is needed for each group.
3. [ENRE] Explanation is not required for this exercise
4. Do not panic.

Date: $13 / 3 / 2020$			
Name	ID		

1. For each code given below, check whether the code is linear. Note that these codes are from Exercise 9. They are all optimal codes (minimum $P(\mathcal{E})$) for the case when $n=5$ and $k=2$.

	Linear?	Reason
$\{00110,01011,10000,11101\}$	No	$\underline{\mathbf{0}} \notin \mathcal{C}$.
$\{01100,10101,00010,11011\}$	No	$\underline{\mathbf{0}} \notin \mathcal{C}$.
$\{00000,11001,01110,10111\}$ $\underline{\mathbf{c}}^{(1)}, \quad \underline{\mathbf{c}}^{(2)}, \quad \underline{\mathbf{c}}^{(3)}, \quad \underline{\mathbf{c}}^{(4)}$	Yes	$\underline{0} \in \mathcal{C}$. So, we have to check that the sum of any non- zero codewords is still a codeword. Here, $\underline{\mathbf{c}}^{(2)} \oplus \underline{\mathbf{c}}^{(3)}=11001 \oplus 01110=10111=\underline{\mathbf{c}}^{(4)}$. Therefore, we also have $\mathbf{c}^{(2)} \oplus \underline{\mathbf{c}}^{(4)}=\underline{\mathbf{c}}^{(3)}$ and $\underline{\mathbf{c}}^{(3)} \oplus \underline{\mathbf{c}}^{(4)}=\underline{\mathbf{c}}^{(2)}$.
$\{10100,11111,00001,01010\}$	No	$\underline{\mathbf{0}} \notin \mathcal{C}$.

2. A linear block code uses the following generator matrix $\mathbf{G}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$.
a. Find the codeword length $n=$ number of columns of $\mathbf{G}=4$
b. Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{ll}1 & 0\end{array}\right]$

$$
\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right]
$$

Alternatively,
c. Find the codebook for this code.

Codebook can be generated by working rowwise: generating each codeword one-by-one

$$
\underline{\underline{\mathbf{x}}}=\underline{\mathbf{b}} \mathbf{G}=\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{l}
\underline{\mathbf{g}}^{(1)} \\
\underline{\mathbf{g}}^{(2)}
\end{array}\right] \stackrel{\text { multiplication }}{=} b_{1} \underline{\mathbf{g}}^{(1)} \oplus b_{2} \underline{\mathbf{g}}^{(2)}
$$

$\underline{\mathbf{b}}$	$\underline{\mathbf{x}}$
00	$0 \mathbf{g}^{(1)} \oplus 0 \mathbf{g}^{(2)}=\underline{\mathbf{0}}=0000$
01	$0 \mathbf{g}^{(1)} \oplus 1 \mathbf{g}^{(2)}=\mathbf{g}^{(2)}=1110$
10	$1 \underline{\mathbf{g}}^{(1)} \oplus 0 \overline{\mathbf{g}}^{(2)}=\mathbf{g}^{(1)}=1001$
11	$1 \underline{\mathbf{g}}^{(1)} \oplus 1 \underline{\mathbf{g}}^{(2)}=\underline{\mathbf{g}}^{(1)} \oplus \underline{\mathbf{g}}$
$b_{1} b_{2}$	0111

Alternatively, we can work column-wise:

ECS 452: In-Class Exercise \# 14

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Only one submission is needed for each group.
3. Do not panic.

Date: $24 / 3 / 2020$			
Name	ID		

1. A codeword $\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]$ is sent over the BSC. Suppose the error pattern is $\underline{\mathbf{e}}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right]$. Find the observed vector at the receiver.
$\underline{\mathbf{y}}=\underline{\mathbf{x}} \oplus \underline{\mathbf{e}}=[0110] \oplus[1101]=[1011]$

Alternatively, from the error pattern, we know that the all bits of $\underline{\mathbf{x}}$ will be flipped by the BSC except the third bit. So, $\underline{\mathbf{y}}$ is constructed accordingly.
2. A codeword $\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]$ is sent over the BSC. Suppose the observed vector at the receiver is $\underline{\mathbf{y}}=\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right]$. Find the error pattern.
From $\underline{\mathbf{y}}=\underline{\mathbf{x}} \oplus \underline{\mathbf{e}}$, we have $\underline{\mathbf{e}} \stackrel{\nabla}{\underline{\mathbf{x}}} \oplus \underline{\mathbf{y}}=[0110] \oplus[1001]=[1111]$

$$
\begin{aligned}
& \underline{\mathbf{y}}=\underline{\mathbf{x}} \oplus \underline{\mathbf{e}} \\
& \underline{\mathbf{x}} \oplus \underline{\mathbf{y}}=\underbrace{\underline{\mathbf{e}}}_{\underline{\mathbf{x}} \oplus \underline{\mathbf{x}}} \oplus \underline{\underline{e}} \\
& \underline{\mathbf{x}} \oplus \underline{\mathbf{y}}=\underline{\mathbf{e}}
\end{aligned}
$$

Alternatively, recall that the error pattern indicates the locations of error. Here, all bits of $\underline{\mathbf{x}}$ and \mathbf{y} are different. So, the error pattern should be [1111].
3. A codeword is sent over the BSC.

Suppose the observed vector at the receiver is $\underline{\mathbf{y}}=\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$ and the error pattern is $\underline{\mathbf{e}}=\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]$. Find the transmitted codeword.
From $\underline{\mathbf{y}}=\underline{\mathbf{x}} \oplus \underline{\mathbf{e}}$, we have $\underline{\mathbf{x}} \underline{\underline{\mathbf{y}}} \oplus \underline{\mathbf{e}}=[0010] \oplus[1110]=[1100]$

$$
\begin{gathered}
\underline{\mathbf{y}}=\underline{\mathbf{x}} \oplus \underline{\mathbf{e}} \\
\underline{\mathbf{y}} \oplus \underline{\mathbf{e}}=\underline{\mathbf{x}} \oplus \underbrace{\mathbf{e} \oplus \oplus}_{\underline{0}} \\
\mathbf{y} \oplus \mathbf{e}
\end{gathered}
$$

Alternatively, the error pattern says that all bits are received incorrectly except the $4^{\text {th }}$ bit. Therefore, to recover $\underline{\mathbf{x}}$, we need to flip all bits of \mathbf{y} except the $4^{\text {th }}$ bit.

ECS 452: In-Class Exercise \# 15

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Only one submission is needed for each group.
3. Do not panic.

Date: 27 / 3 / 2020	
Name	

1. Consider a linear block code whose generator matrix is

$$
\mathbf{G}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

a. Find the length k of each message block
\mathbf{G} has 3 rows. Therefore, $k=3$.
b. Find the code length n
\mathbf{G} has 5 columns. Therefore, $n=5$.
c. In the table below, list all possible data (message) vectors $\underline{\mathbf{b}}$ in the leftmost column (one in each row).

Then, find the corresponding codewords $\underline{\mathbf{x}}$ and their weights in the second and third columns,
respectively.

$\underline{\mathbf{b}}$			$\underline{\mathbf{x}}$				
b_{1}	b_{2}	b_{3}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	1	0	1
0	1	1	0	0	1	1	1
1	0	0	1	0	0	0	1
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	0
1	1	1	1	0	1	1	0
3							

d. Find the minimum distance $d_{\text {min }}$ for this code. Because the code is linear,

$$
d_{\min }=\min _{\underline{\mathbf{x}} \neq \underline{\mathbf{0}}} w(\underline{\mathbf{x}})=2 .
$$

e. What is the maximum number of bit errors that this code can guarantee to detect?

$$
d_{\min }-1=1
$$

f. What is the maximum number of bit errors that this code can guarantee to correct?

$$
\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor=\left\lfloor\frac{1}{2}\right\rfloor=0
$$

2. Consider a linear block code whose generator matrix is

$$
\mathbf{G}=\left(\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right) .
$$

Suppose the minimum distance $d_{\text {min }}$ for this code is $d_{\text {min }}=8$.
a. What is the maximum number of bit errors that this code can guarantee to detect?

$$
d_{\min }-1=7
$$

b. What is the maximum number of bit errors that this code can guarantee to correct?

$$
\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor=\left\lfloor\frac{7}{2}\right\rfloor=3
$$

ECS 452: In-Class Exercise \# 16

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Only one submission is needed for each group.
3. [ENRE] Explanation is not required for this exercise.
4. Do not panic.

Date: $31 / 3 / 2020$			
Name	ID		

1. Consider a linear block code that uses parity checking on a square array:

First, we use the provided
definition to write down the equations that produce the parity bits. This definition is exactly the same as the one given in lectuke when we defined parity ckecking on a square array

b_{1}	b_{3}	p_{1}
b_{2}	b_{4}	p_{2}
p_{3}	p_{4}	$p_{1}=b_{1} \oplus b_{3}=b_{3} \oplus b_{4}$

Each parity bit p_{i} is calculated such that the corresponding row or column has even parity.
Suppose the following bits arrangement is used in the codeword:

$$
\mathbf{G}=\left(\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

a. Find the generator matrix \mathbf{G}.

Recall that the 1 s and 0 s in the $j^{\text {th }}$ column of \mathbf{G} tells which positions of the data bits are combined (\oplus) to produce the $j^{\text {th }}$ bit in the codeword.
b. Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right]$.

Method 1: First, we fill out the array above with the message. Then, we calculate the parity bits.

1	1	p_{1}
0	0	p_{2}
p_{3}	p_{4}	

The codeword can be read directly from the array: $\underline{\underline{x}}=\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right)$.
Method 2: It is still true that $\underline{\underline{x}}=\underline{\mathbf{b}} \mathbf{G}$. Therefore, we can still use our old technique: to find $\underline{\mathbf{x}}$ when
$\underline{\mathbf{b}}=\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right]$, we simply need to add the first and the third rows of \mathbf{G}. This also gives
$\underline{\mathbf{x}}=\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right)$.
c. Find the parity-check matrix \mathbf{H}.

We look at two parts of \mathbf{G} : the message part and the parity part.

$$
\mathbf{G}=\left(\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

The parity part (columns) from \mathbf{G} is transposed and put into the message positions (columns). The remaining columns are filled in by an identity matrix.

$$
\mathbf{H}=\left(\begin{array}{llllllll}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

ECS 452: In-Class Exercise \# 17

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Only one submission is needed for each group.
3. Do not panic.

Date: $3 / 4 / 2020$	ID	
Name	(ana d dific	

Consider a block code whose generator matrix is

The crossing here tries to
a. Find the parity check matrix \mathbf{H} of this code. capture the fact that there is a swapping of the positions.
b. Suppose we receive $\mathbf{y}=011111$.
i. Find the syndrome vector $\underline{\mathbf{s}}$.

Because the 1 s in \mathbf{y} are in the last five positions, to find the syndrome, we add the last five columns of \mathbf{H}.

$$
\begin{aligned}
& \begin{array}{l}
\underline{\mathbf{s}}=\underline{\mathbf{y}}^{T}=\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right)^{T}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{T}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \\
\text { Find the decoded codeword } \hat{\underline{\mathbf{x}} .} \\
\text { The syndrome } \left.\underline{\mathbf{s}} \text { is the same as the last column of } \mathbf{H} . \begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
\end{array} \\
& \text { Therefore, } \underline{\hat{\mathbf{e}}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \text { and } \\
& \underline{\hat{\mathbf{x}}}=\underline{\mathbf{y}}-\underline{\hat{\mathbf{e}}}=\underline{\mathbf{y}} \oplus \underline{\hat{\mathbf{e}}}=\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

iii. Find the decoded message $\underline{\mathbf{b}}$.

From \mathbf{G}, we have columns of \mathbb{I}_{3} in the $1^{\text {st }}, 4^{\text {th }}$, and $5^{\text {th }}$ columns; so, given a codeword $\underline{\mathbf{x}}$, the message $\underline{\mathbf{b}}$ corresponding to this codeword is given by the codeword's $1^{\text {st }}, 4^{\text {th }}$, and $5^{\text {th }}$ bits. Here, the decoded codeword is $\underline{\hat{\mathbf{x}}}=\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 1 & 0\end{array}\right)$. Therefore, the corresponding decoded message is $\underline{\hat{\mathbf{b}}}=\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)$.

ECS 452: In-Class Exercise \# 18

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Only one submission is needed for each group.
3. [ENRE] Explanation is not required for this exercise.
4. Do not panic.

Date: $7 / 4 / 2020$	ID	
Name	ans inime	

Consider a convolution encoder represented by the following diagram

(a) Draw the corresponding state (transition) diagram First, observe that this encoder uses a shift
register with two FFs
which is the same as the
one discussed in lecture.
Therefore,
the arrows
will be the
same as what
we had in the
lecture.

1/01
from the encoder in lecture.
Therefore, we simply need to find the outputs.

b	S1	S2	$\mathrm{x}^{(1)}$	$\mathrm{x}^{(2)}$
0	0	0	0	0
1	0	0	1	1
0	0	1	0	1
1	0	1	1	0
0	1	0	1	1
1	1	0	0	0
0	1	1	1	0
1	1	1	0	1

(b) Suppose the information bits (the message bits) are $\underline{\mathbf{b}}=01001$.
Find the corresponding codeword \underline{x}
i. by using the direct method (filling out the table below) without the help of the state diagram from part (a).

Note that the final output is

$$
\begin{aligned}
& \underline{\mathbf{x}}=\underline{0} \underline{0} 1111 \underline{1} 111 \underline{1} \begin{array}{l}
\text { one row vector resulting } \\
\text { from interleaving the upper } \\
\text { and } \\
\text { and lower outputs. }
\end{array}
\end{aligned}
$$

ii. by "tracing" the corresponding path on the state diagram derived in part (a) Draw/highlight your trace on the state diagram in part (a) using different pen color.

See the trace in the diagram on the left.
$\underline{\mathbf{x}}=\underline{0} \underline{0} 11110111$

ECS 452: In-Class Exercise \# 19

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Only one submission is needed for each group.
3. [ENRE] Explanation is not required for this exercise.
4. Do not panic.

Date: $10 / 4 / 2020$			
Name	ID		

Consider a convolutional encoder whose trellis diagram is given below.
Vector $\underline{\mathbf{y}}$ and the numbers enclosed by the round brackets () are used in the second problem.

1. Suppose the data vector is $\underline{\mathbf{b}}=[010]$. Find the corresponding codeword $\underline{\mathbf{x}}$.

Reading from the purple path, we get [001110]
2. Suppose that we observe $\underline{\mathbf{y}}=010110 \ldots$ at the input of the minimum distance decoder.

The decoder uses Viterbi's algorithm. (The first two stages were already calculated for you.) Your job is to work on the last stage.
a. Write down
(1) all the (distance) values on the branches and
(2) the (chosen) cumulative distance values inside all the circles
in the figure above.
b. Put " x " on the branches that are removed by the Viterbi algorithm.
c. Suppose the decoder works only on the first six bits of $\underline{\mathbf{y}}$.

Find the decoded codeword $\underline{\hat{\mathbf{x}}}$ and the decoded message $\underline{\hat{\mathbf{b}}}$.
Reading from the blue path, we get [110110].
$\underline{\hat{\mathbf{x}}}=[110110] \quad \underline{\hat{\mathbf{b}}}=\underline{[111]}$.

ECS 452: In-Class Exercise \# 20

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

Date: 14 / $4 / 2020$			
Name			
	ID		

1. Consider three vectors: $\overrightarrow{\mathbf{v}}^{(1)}=\left(\begin{array}{r}-5 \\ 5 \\ -1 \\ 1\end{array}\right), \overrightarrow{\mathbf{v}}^{(2)}=\left(\begin{array}{r}-1 \\ 1 \\ 0 \\ 0\end{array}\right)$, and $\overrightarrow{\mathbf{v}}^{(3)}=\left(\begin{array}{r}3 \\ -3 \\ 1 \\ -1\end{array}\right)$. Let $\overrightarrow{\mathbf{e}}^{(1)}=\frac{1}{2}\left(\begin{array}{r}-1 \\ 1 \\ 1 \\ -1\end{array}\right)$ and $\overrightarrow{\mathbf{e}}^{(2)}=\frac{1}{2}\left(\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right)$.
a. Show that $\overrightarrow{\mathbf{e}}^{(1)}$ and $\overline{\mathbf{e}}^{(2)}$ are orthonormal.

To show they are orthonormal, we need to show that they are orthogonal and have unit norm. $\|\overrightarrow{\mathrm{x}}\|^{2}=\sum_{i} x_{i}^{2}$
$\left\|\overrightarrow{\mathbf{e}}^{(1)}\right\|^{2} \stackrel{i}{=}\left(\frac{1}{2}\right)^{2}\left((-1)^{2}+1^{2}+1^{2}+(-1)^{2}\right)=\frac{1}{4}(4)=1 \Rightarrow\left\|\overrightarrow{\mathbf{e}}^{(1)}\right\|=1 \quad$ Both have unit
$\left.\left\|\overrightarrow{\mathbf{e}}^{(2)}\right\|^{2}=\left(\frac{1}{2}\right)^{2}\left(1^{2}+(-1)^{2}+1^{2}+(-1)^{2}\right)=\frac{1}{4}(4)=1 \Rightarrow\left\|\overrightarrow{\mathbf{e}}^{(2)}\right\|=1\right\}$ norm.
$\left\langle\overrightarrow{\mathbf{e}}^{(1)}, \overrightarrow{\mathbf{e}}^{(2)}\right\rangle=\frac{1}{2} \times \frac{1}{2} \times((-1)(1)+(1)(-1)+(1)(1)+(-1)(-1))=0 \Rightarrow$ They are orthogonal.
$\langle\stackrel{\rightharpoonup}{\mathbf{x}}, \stackrel{\rightharpoonup}{\mathrm{y}}\rangle=\sum_{i} x_{i} y_{i}$
b. Calculate the following inner products:

$$
\begin{aligned}
& \left\langle\stackrel{\mathbf{v}}{ }_{(1)}, \stackrel{\mathbf{e}}{ }_{(1)}^{\rangle}\right\rangle \stackrel{\downarrow}{=} \quad-5 \quad 5 \quad-1 \quad 1 \quad \times \quad\left\langle\stackrel{\rightharpoonup}{\mathbf{v}}^{(1)}, \stackrel{\mathbf{e}}{ }_{(2)}^{1}\right\rangle=\begin{array}{llllll}
-5 & 5 & -1 & 1 & \times
\end{array} \\
& \frac{1}{2}\left(\begin{array}{llll}
-1 & 1 & -1
\end{array}\right) \quad \frac{1}{2}\left(\begin{array}{llll}
1 & -1 & 1 & -1
\end{array}\right) \\
& \frac{1}{2}\left(\begin{array}{cccc}
5 & 5 & -1 & -1
\end{array}\right) \xrightarrow{\Sigma} \frac{8}{2}=4 \quad \frac{1}{2}\left(\begin{array}{llll}
-5 & -5 & -1 & -1
\end{array}\right) \xrightarrow{\Sigma} \frac{-12}{2}=-6
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 0 & 0
\end{array}\right) \xrightarrow{\Sigma} \frac{2}{2}=1 \\
& \left\langle\overrightarrow{\mathbf{v}}^{(3)}, \overrightarrow{\mathbf{e}}^{(1)}\right\rangle=\begin{array}{llll}
3 & -3 & 1 & -1
\end{array} \times \quad\left\langle\stackrel{\rightharpoonup}{\mathbf{v}}^{(3)}, \overrightarrow{\mathbf{e}}^{(2)}\right\rangle=\begin{array}{llll}
3 & -3 & 1 & -1
\end{array}
\end{aligned}
$$

c. Suppose we use $\overrightarrow{\mathbf{e}}^{(1)}$ and $\overrightarrow{\mathbf{e}}^{(2)}$ as the new axes. Find the corresponding vectors $\overrightarrow{\mathbf{c}}^{(1)}, \overrightarrow{\mathbf{c}}^{(2)}$, and $\overrightarrow{\mathbf{c}}^{(3)}$ that represent $\overrightarrow{\mathbf{v}}^{(1)}, \overrightarrow{\mathbf{v}}^{(2)}$, and $\overrightarrow{\mathbf{v}}^{(3)}$ in the new coordinate system defined by $\overline{\mathbf{e}}^{(1)}$ and $\overrightarrow{\mathbf{e}}^{(2)}$.
We use the inner products that we calculated in the previous part.

$$
\overrightarrow{\mathbf{c}}^{(1)}=\binom{\left\langle\overrightarrow{\mathbf{v}}^{(1)}, \overrightarrow{\mathbf{e}}^{(1)}\right\rangle}{\left\langle\overrightarrow{\mathbf{v}}^{(1)}, \overrightarrow{\mathbf{e}}^{(2)}\right\rangle}=\binom{4}{-6}, \overrightarrow{\mathbf{c}}^{(2)}=\binom{\left\langle\overrightarrow{\mathbf{v}}^{(2)}, \overrightarrow{\mathbf{e}}^{(1)}\right\rangle}{\left\langle\overrightarrow{\mathbf{v}}^{(2)}, \overrightarrow{\mathbf{e}}^{(2)}\right\rangle}=\binom{1}{-1}, \overrightarrow{\mathbf{c}}^{(3)}=\binom{\left\langle\overrightarrow{\mathbf{v}}^{(3)}, \overrightarrow{\mathbf{e}}^{(1)}\right\rangle}{\left\langle\overrightarrow{\mathbf{v}}^{(3)}, \overrightarrow{\mathbf{e}}^{(2)}\right\rangle}=\binom{-2}{4}
$$

ECS 452: In-Class Exercise \# 21

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $17 / 4 / 2020$			
Name	ID		

1. Consider two waveforms $s_{1}(t)$ and $s_{2}(t)$ shown below.

a. Find the energy of each waveform.
$E_{1}=E_{S_{1}}=\int_{-\infty}^{\infty}\left|s_{1}(t)\right|^{2} d t=\int_{0}^{4}|1|^{2} d t=4$.
$E_{2}=E_{S_{2}}=\int_{-\infty}^{\infty}\left|s_{2}(t)\right|^{2} d t=\int_{0}^{2}|2|^{2} d t=4 \times 2=8$.
b. Calculate their inner product $\left\langle s_{1}(t), s_{2}(t)\right\rangle$.

$$
\begin{aligned}
\left\langle s_{1}(t), s_{2}(t)\right\rangle & =\int_{-\infty}^{\infty} s_{1}(t) s_{2}^{*}(t) d t=\int_{0}^{4} s_{1}(t) s_{2}^{*}(t) d t=\int_{0}^{2} s_{1}(t) s_{2}^{*}(t) d t+\int_{2}^{4} s_{1}(t) s_{2}^{*}(t) d t \\
& =\int_{0}^{2}(1)(2) d t+\int_{2}^{4}(1)(0) d t=2 \times 2+0=4
\end{aligned}
$$

c. Let $u(t)=s_{2}(t)-s_{1}(t)$.
i. Plot $u(t)$.

Similar to the integration for the inner product, we consider two time intervals: from 0 to 2 and from 2 to 4 .
From $t=0$ to $t=2, s_{2}(t)-s_{1}(t)=2-1=1$.
From $t=2$ to $t=4, s_{2}(t)-s_{1}(t)=0-1=-1$.

ii. Calculate the energy of $u(t)$

$$
E_{\mathrm{u}}=\int_{-\infty}^{\infty}|u(t)|^{2} d t=\int_{0}^{2}|1|^{2} d t+\int_{2}^{4}|-1|^{2} d t=(2 \times 1)+(2 \times 1)=4
$$

iii. Calculate the inner product $\left\langle s_{1}(t), u(t)\right\rangle$

$$
\begin{aligned}
\left\langle s_{1}(t), u(t)\right\rangle & =\int_{-\infty}^{\infty} s_{1}(t) u^{*}(t) d t=\int_{0}^{2} s_{1}(t) u^{*}(t) d t+\int_{2}^{4} s_{1}(t) u^{*}(t) d t \\
& =\int_{0}^{2}(1)(1) d t+\int_{2}^{4}(1)(-1) d t=(2 \times 1)+(2 \times(-1))=0
\end{aligned}
$$

ECS 452: In-Class Exercise \# 22

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

Date: $21 / 4 / 2020$	ID	
Name	(ana d dific	

1. Continue from Exercise \# 21. (You may use the results from the solution of Exercise \# 21 as well.)
Consider two signals $s_{1}(t)$ and $s_{2}(t)$ shown below.

a. Show that $\phi_{1}(t)$ and $\phi_{2}(t)$ are orthonormal.

Let $\quad \phi_{1}(t)=\frac{s_{1}(t)}{\sqrt{E_{s_{1}}}}=\frac{1}{2} s_{1}(t)$ and

$$
\phi_{2}(t)=\frac{u(t)}{\sqrt{E_{u}}}=\frac{s_{2}(t)-s_{1}(t)}{2} .
$$

We have seen that for any energy signal $x(t)$, the normalized signal $\frac{x(t)}{\sqrt{E_{x}}}$ always has unit energy.
Therefore, there is no need to check that $\phi_{1}(t)$ and $\phi_{2}(t)$ have unit energy.

$$
\begin{aligned}
\left\langle\phi_{1}(t), \phi_{2}(t)\right\rangle=\left\langle\frac{1}{2} s_{1}(t), \frac{1}{2} u(t)\right\rangle & =\frac{1}{2} \times \frac{1}{2} \times\left\langle s_{1}(t), u(t)\right\rangle=\frac{1}{2} \times \frac{1}{2} \times 0=0 .
\end{aligned}
$$

(See properties of inner products on the next page)
b. Calculate the following inner products:

$$
\begin{aligned}
&\left\langle s_{1}, \phi_{1}\right\rangle=\left\langle s_{1}, \frac{1}{2} s_{1}\right\rangle=\frac{1}{2}\left\langle s_{1}, s_{1}\right\rangle \\
&=\frac{1}{2} E_{S_{1}}=\frac{1}{2}(4)=2 . \\
& \text { Promerty (2) Exec. } 21, E_{s_{1}}=4 .
\end{aligned}
$$

$$
\left\langle s_{1}, \phi_{2}\right\rangle=\left\langle s_{1}, \frac{s_{2}-s_{1}}{2}\right\rangle \stackrel{1}{2}\left\langle s_{1}, u\right\rangle
$$

$$
=\frac{1}{2} \times 0=0 \text {. }
$$

From Exec. 21, $\left\langle s_{1}, u\right\rangle=0$.

$$
\begin{aligned}
\left\langle s_{2}, \phi_{1}\right\rangle & =\left\langle s_{2}, \frac{1}{2} s_{1}\right\rangle=\frac{1}{2}\left\langle s_{2}, s_{1}\right\rangle \\
& =\frac{1}{2}\left\langle s_{1}, s_{2}\right\rangle=\frac{1}{2}(4)=2 . \\
& \text { Prom Exec. } 21,\left\langle s_{1}, s_{2}\right\rangle=4 .
\end{aligned}
$$

$$
\left\langle s_{2}, \phi_{2}\right\rangle=\left\langle s_{2}, \frac{s_{2}-s_{1}}{2}\right\rangle=\frac{1}{2}\left\langle s_{2}, s_{2}-s_{1}\right\rangle
$$

$$
=\frac{1}{2}\left(\left\langle s_{2}, s_{2}\right\rangle-\left\langle s_{2}, s_{1}\right\rangle\right)
$$

$$
\operatorname{Property}(4)=\frac{1}{2}\left(E_{S_{2}}-\left\langle s_{1}, s_{2}\right\rangle\right)=\frac{1}{2}(8-4)=2
$$

From Exec. $21,\left\langle s_{1}, s_{2}\right\rangle=4$.
c. Suppose we use $\phi_{1}(t)$ and $\phi_{2}(t)$ as the new axes. Find the corresponding vectors $\overrightarrow{\mathbf{s}}^{(1)}$ and $\overline{\mathbf{s}}^{(2)}$ that represent $s_{1}(t)$ and $s_{2}(t)$ in the new coordinate system defined by $\phi_{1}(t)$ and $\phi_{2}(t)$.

$$
\overrightarrow{\mathbf{s}}^{(1)}=\binom{\left\langle s_{1}(t), \phi_{1}(t)\right\rangle}{\left\langle s_{1}(t), \phi_{2}(t)\right\rangle}=\binom{2}{0}, \overrightarrow{\mathbf{s}}^{(2)}=\binom{\left\langle s_{2}(t), \phi_{1}(t)\right\rangle}{\left\langle s_{2}(t), \phi_{2}(t)\right\rangle}=\binom{2}{2} .
$$

Many properties involving inner products follow from properties of integration.
Here are some useful properties:
(1) For two real-valued waveforms $x(t)$ and $y(t)$,

$$
\langle y(t), x(t)\rangle=\int_{-\infty}^{\infty} y(t) x(t) d t=\int_{-\infty}^{\infty} x(t) y(t) d t=\langle x(t), y(t)\rangle
$$

(2) For two real-valued waveforms $x(t)$ and $y(t)$ and two real-valued constant a and b,

$$
\langle a x(t), b y(t)\rangle=\int_{-\infty}^{\infty}(a x(t))(b y(t)) d t=a b \int_{-\infty}^{\infty}(x(t))(y(t)) d t=a b\langle x(t), y(t)\rangle
$$

(3) For a real-valued waveforms $x(t)$ and a real-valued constant c,

$$
\|c x(t)\|=\sqrt{\langle c x(t), c x(t)\rangle}=\sqrt{c^{2}\langle x(t), x(t)\rangle}=|c| \sqrt{\langle x(t), x(t)\rangle}=|c|\|x(t)\| .
$$

(4) For three real-valued waveforms $x(t), y_{1}(t), y_{2}(t)$ and two real-valued constant c_{1} and c_{2},

$$
\begin{aligned}
\left\langle x(t), c_{1} y_{1}(t)+c_{2} y_{2}(t)\right\rangle & =\int_{-\infty}^{\infty} x(t)\left(c_{1} y_{1}(t)+c_{2} y_{2}(t)\right) d t \\
& =c_{1} \int_{-\infty}^{\infty} x(t) y_{1}(t) d t+c_{2} \int_{-\infty}^{\infty} x(t) y_{2}(t) d t \\
& =c_{1}\left\langle x(t), y_{1}(t)\right\rangle+c_{2}\left\langle x(t), y_{2}(t)\right\rangle
\end{aligned}
$$

ECS 452: In-Class Exercise \# 23

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $24 / 4 / 2020$			
Name	ID		
	ditili)		

A digital communication system transmits a stream of bits by mapping each block of three bits to one of the possible waveforms $s_{1}(t), s_{2}(t), \ldots, s_{M}(t)$. The waveform is then transmitted via a communication channel which corrupts the waveform by independently adding a white noise process $N(t)$ whose power spectral density is given by $S_{N}(f) \equiv 16$ across all frequency.
a. What is the value of M ?

The modulator uses blocks of three bits as its input. There are 2^{3} possibilities for three-bit blocks. Each possible block should be mapped to a unique waveform So, there should be $M=2^{3}=8$ possible waveforms.
b. Consider two orthonormal functions $\phi_{1}(t)$ and $\phi_{2}(t)$. Let $N_{j}=\left\langle N(t), \phi_{j}(t)\right\rangle$. Find Because $N(t)$ is a white noise process, we can apply [7.26] from the lecture note. Here, $\frac{N_{0}}{2}=16$.
i. $\mathbb{E}\left[N_{1}\right]=0$ by [7.26.f.i].

$$
\mathbb{E}\left[N_{1}\right]=0 \text { by [7.26.f.i] or by part (i) above. }
$$

ii. $\operatorname{Var}\left[N_{1}\right]=\mathbb{E}\left[N_{1}^{2}\right]-\left(\mathbb{E}\left[N_{1}\right]\right)^{2}=\frac{N_{0}}{2}-(0)^{2}=16$.

$$
\mathbb{E}\left[N_{1}^{2}\right]=\mathbb{E}\left[N_{1} N_{1}\right]=\frac{N_{0}}{2} \text { by [7.26.f.ii] with } i=j=1 \text {. }
$$

iii. $\quad \sigma_{N_{1}}=\sqrt{\operatorname{Var}\left[N_{1}\right]}=\sqrt{16}=4$.
$\stackrel{\sim}{\operatorname{Var}\left[N_{1}\right]}=16$ by part (ii) above.
iv. $\mathbb{E}\left[N_{1} N_{2}\right]=0$ by [7.26.f.ii] with $i \neq j$.

ECS 452: In-Class Exercise \# 24

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

Date: 28 / 4 / 2020	
Name	ID ${ }_{\text {lata }}^{\text {dipat }}$

In a binary antipodal signaling scheme, the message S is randomly selected from the alphabet set $\mathcal{S}=\{-2,2\}$ uth $p_{1}=P[S=-2]=0.6$ and $p_{2}=P[S=2]=0.4$. The message is corrupted by an independent additive noise N. The detector observes $R=S+N$ at its input.
a. Suppose that the noise is a discrete random variable those pmf is $p_{N}(n)= \begin{cases}0.2, & n \in\{-2,2\}, \\ 0.6, & n=0, \\ 0, & \text { otherwise } .\end{cases}$
i. List all possible values of R.

When $S=-2$, we have $R=S+N=-2+N . N$ can e $-2,0,2$; so, R can be $-4,-2,0$.
When $S=2$, we have $R=S+N=2+N . N$ can be -2 , 0,2 ; so, R can be $0,2,4$.
Combining the two cases, R can be $-4,-2,0,2,4$.
ii. Find the corresponding \mathbf{Q} matrix. (Recall that the \mathbf{Q} matrix contains $P[R=r \mid S=s]$.)

Recall that $P[R=r \mid S=s]=p_{N}(r-s)$.
We first find the values of $r-s$. Then, we calculate $p_{N}(r-s)$ from the provided expression.

$$
\begin{gathered}
s \backslash r \\
-2 \\
2
\end{gathered}\left[\begin{array}{ccccc}
-4 & -2 & 0 & 2 & 4 \\
-2 & 0 & 2 & 4 & 6 \\
-6 & -4 & -2 & 0 & 2
\end{array}\right] \quad \begin{gathered}
s \backslash r \\
-2 \\
2
\end{gathered}\left[\begin{array}{rrrr}
-4 & -2 & 0 & 2
\end{array} \left\lvert\, \begin{array}{r}
4 \\
0.2 \\
0
\end{array} 0.6 \begin{array}{cc}
0.2 & 0
\end{array}\right.\right)
$$

iii. Find the MAP detector $\hat{s}_{\text {seP }}(r)$. When the noise is a discrete RV, we follow the te qnique from [3.40] in CH3. Starting with the \mathbf{Q} matrix, we scale its rows by the prior probabilities to get the \mathbf{P} matrix.

$$
\begin{aligned}
& s \backslash r \quad-4 \quad-2 \begin{array}{llllllllll}
& 0 & 2 & 4 & s \backslash r & -4 & -2 & 0 & 2 & 4
\end{array} \text { Then, we select the } \\
& \begin{array}{r}
-2 \\
2
\end{array}\left[\begin{array}{rrrrr}
0.2 & 0.6 & 0.2 & 0 & 0 \\
0 & 0 & 0.2 & 0.6 & 0.2
\end{array}\right] \xrightarrow{x 0.6}-2 \begin{array}{rrrrrrrr}
\hline 0.4 & 0.12 & 0.36 & 0.12 & 0 & 0 \\
0 & 0 & 0.08 & 0.24 & 0.08 \\
\hline 0.4
\end{array} \\
& \hat{s}_{\mathrm{MAP}}(r)=\left\{\begin{array}{ccl}
-2, & r \in\{-4,-2,0\}, & \text { or, in } \\
2, & r \in\{2,4\} . & \text { tabular }
\end{array} \quad \begin{array}{ll|c|c|c|c|c|}
\hline r & -4 & -2 & 0 & 2 & 4 \\
\hline \hat{s}_{\mathrm{MAP}}(r) & -2 & -2 & -2 & 2 & 2 \\
\hline
\end{array}\right. \\
& \text { column. The } \\
& \text { corresponding } s \\
& \text { value is the value of } \\
& \hat{s} \text { for that } r \text {. } \\
& \text { b. Suppose that the noise is a continuous random variable whose pdf is } \\
& \text { i. What is the value of } h \text { ? }
\end{aligned}
$$

Area must be 1 . Here, we have $\frac{1}{2} \times h \times 8=1$. Therefore, $h=\frac{1}{4}$.
ii. Suppose $R=0$ is observed. Find the corresponding output of the MAP detector.

$$
\begin{gathered}
p_{1} f_{N}\left(r-s^{(1)}\right)=0.6 f_{N}(0-(-2))=0.6 \times f_{N}(2)=0.6 \times \frac{h}{2}=0.3 h=0.075 \\
p_{2} f_{N}\left(r-s^{(2)}\right)=0.4 f_{N}(0-2)=0.4 \times f_{N}(-2)=0.4 \times \frac{h}{2}=0.2 h=0.050
\end{gathered}
$$

Because $p_{1} f_{N}\left(r-s^{(1)}\right)>p_{2} f_{N}\left(r-s^{(2)}\right)$ at $r=0$, we conclude that $\hat{s}_{\text {MAP }}(0)=s^{(1)}=-2$.

ECS 452: In-Class Exercise \# 26

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

Date:	
Name	ID

In a binary antipodal signaling scheme, the message S is randomly selected from the alphabet set $\mathcal{S}=\{-2,2\}$ with $p_{1}=P[S=-2]=0.6$ and $p_{2}=P[S=2]=0.4$. The message is corrupted by an independent additive noise N. The detector observes $R=S+N$ at its input. Suppose $N \sim \mathcal{N}(0,4)$.

1. Suppose the received symbol is $R=r$. Find the MAP detector $\hat{s}_{\mathrm{MAP}}(r)$.

Let $\tau_{M A P}$ be the value of r at which $p_{1} f_{N}\left(r-s^{(1)}\right)=p_{2} f_{N}\left(r-s^{(2)}\right)$.
Here, $p_{1}=0.6, p_{2}=0.4, s^{(1)}=-2, s^{(2)}=2$, and $f_{N}(n)=\frac{1}{\sqrt{2 \pi} \sigma_{N}} e^{-\frac{1}{2}\left(\frac{n}{\sigma_{N}}\right)^{2}}$ where $\sigma_{N}=\sqrt{4}=2$. So,

$$
\begin{aligned}
0.6 \frac{1}{\sqrt{2 \pi} 2} e^{-\frac{1}{2}\left(\frac{r-(-2)}{2}\right)^{2}} & =0.4 \frac{1}{\sqrt{2 \pi} 2} e^{-\frac{1}{2}\left(\frac{r-2}{2}\right)^{2}} \\
\frac{0.6}{0.4} & =e^{-\frac{1}{2 \times 2^{2}}\left((r-2)^{2}-(r-(-2))^{2}\right)} \\
& =e^{-\frac{1}{8}\left(\left(r^{2}-4 r+4\right)-\left(r^{2}+4 r+4\right)\right)} \\
& =e^{-\frac{1}{8}(-8 r)}=e^{r} \\
\frac{3}{2} & =e^{r} \\
r & =\ln \left(\frac{3}{2}\right) \approx 0.4055
\end{aligned}
$$

$$
\tau_{\mathrm{MAP}} \approx 0.4055 \rightarrow \hat{s}_{\mathrm{MAP}}(r)=\left\{\begin{array} { l l }
{ s ^ { (1) } , } & { r < \tau _ { \mathrm { MAP } } , } \\
{ s ^ { (2) } , } & { r \geq \tau _ { \mathrm { MAP } } }
\end{array} \approx \left\{\begin{array}{cc}
-2, & r<0.4055 \\
2, & r \geq 0.4055
\end{array}\right.\right.
$$

2. Evaluate the corresponding error probability of the MAP detector. Your answer should be of the form $a_{1} Q\left(b_{1}\right)+a_{2} Q\left(b_{2}\right)+a_{3} Q\left(b_{3}\right)+\cdots$ where the a_{i} and b_{i} are nonnegative constants.

ECS 452: In-Class Exercise \# 26

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

Date: $5 / 5 / 2020$	ID	
Name	(ana d dific	

In a binary antipodal signaling scheme, the message S is randomly selected from the alphabet set $\mathcal{S}=\{-2,2\}$ with $p_{1}=P[S=-2]=0.6$ and $p_{2}=P[S=2]=0.4$. The message is corrupted by an independent additive noise N. The detector observes $R=S+N$ at its input. Suppose $N \sim \mathcal{N}(0,4)$.

1. Suppose the received symbol is $R=r$. Find the MAP detector $\hat{s}_{\mathrm{MAP}}(r)$.

Let $\tau_{M A P}$ be the value of r at which $p_{1} f_{N}\left(r-s^{(1)}\right)=p_{2} f_{N}\left(r-s^{(2)}\right)$.
Here, $p_{1}=0.6, p_{2}=0.4, s^{(1)}=-2, s^{(2)}=2$, and $f_{N}(n)=\frac{1}{\sqrt{2 \pi} \sigma_{N}} e^{-\frac{1}{2}\left(\frac{n}{\sigma_{N}}\right)^{2}}$ where $\sigma_{N}=\sqrt{4}=2$. So,

$$
\begin{aligned}
0.6 \frac{1}{\sqrt{2 \pi} 2} e^{-\frac{1}{2}\left(\frac{r-(-2)}{2}\right)^{2}} & =0.4 \frac{1}{\sqrt{2 \pi} 2} e^{-\frac{1}{2}\left(\frac{r-2}{2}\right)^{2}} \\
\frac{0.6}{0.4} & =e^{-\frac{1}{2 \times 2^{2}}\left((r-2)^{2}-(r-(-2))^{2}\right)} \\
& =e^{-\frac{1}{8}\left(\left(r^{2}-4 r+4\right)-\left(r^{2}+4 r+4\right)\right)} \\
& =e^{-\frac{1}{8}(-8 r)}=e^{r} \\
\frac{3}{2} & =e^{r} \\
r & =\ln \left(\frac{3}{2}\right) \approx 0.4055
\end{aligned}
$$

$$
\tau_{\mathrm{MAP}} \approx 0.4055 \rightarrow \hat{s}_{\mathrm{MAP}}(r)=\left\{\begin{array} { l l }
{ s ^ { (1) } , } & { r < \tau _ { \mathrm { MAP } } , } \\
{ s ^ { (2) } , } & { r \geq \tau _ { \mathrm { MAP } } }
\end{array} \approx \left\{\begin{array}{cc}
-2, & r<0.4055 \\
2, & r \geq 0.4055
\end{array}\right.\right.
$$

2. Evaluate the corresponding error probability of the MAP detector. Your answer should be of the form $a_{1} Q\left(b_{1}\right)+a_{2} Q\left(b_{2}\right)+a_{3} Q\left(b_{3}\right)+\cdots$ where the a_{i} and b_{i} are nonnegative constants.

