\qquad

ECS 452: Digital Communication Systems 2018/2

HW 9 - Due: Not Due
Lecturer: Prapun Suksompong, Ph.D.

Problem 1. In a ternary signaling scheme (where signals are expressed with respect to some orthonormal basis), the message S is randomly selected from a constellation $\mathcal{S}=\{-1,1,4\}$ with $p_{1}=P[S=-1]=0.41, p_{2}=P[S=1]=0.08$ and $p_{3}=P[S=4]=0.51$. Find the average signal energy E_{s}.

Problem 2. Consider a ternary constellation. Assume that the three vectors are equiprobable.
(a) Suppose the three vectors are

$$
\mathbf{s}^{(1)}=\binom{0}{0}, \mathbf{s}^{(2)}=\binom{3}{0}, \text { and } \mathbf{s}^{(3)}=\binom{3}{3}
$$

Find the corresponding average energy per symbol.
(b) Suppose we can shift the above constellation to other location; that is, suppose that the three vectors in the constellation are

$$
\mathbf{s}^{(1)}=\binom{0-a_{1}}{0-a_{2}}, \mathbf{s}^{(2)}=\binom{3-a_{1}}{0-a_{2}}, \text { and } \mathbf{s}^{(3)}=\binom{3-a_{1}}{3-a_{2}} .
$$

Find a_{1} and a_{2} such that corresponding average energy per symbol is minimum.

Problem 3. Let $g(t)$ be band-limited to 100 Hz and $E_{g}=8$. A signal set is given in each part below. For rigorous analysis, look at the results from Problem 9 first.
(a) $\left\{s_{m}(t)=(2 m-5) g(t) \cos (2,000 \pi t), \quad m=1,2,3,4\right\}$

Consider a unit-energy signal $\phi(t)=\alpha g(t) \cos (2,000 \pi t)$.
(i) Find the constant α.
(ii) Draw the corresponding constellation (with respect to $\phi(t)$).
(b) $\left\{s_{m}(t)=g(t) \cos \left(2,000 \pi t+\frac{\pi}{2}(m-1)\right), \quad m=1,2,3,4\right\}$

Consider two orthonormal signals:

$$
\phi_{1}(t)=\alpha_{1} g(t) \cos \left(2 \pi f_{c} t\right), \quad \text { and } \quad \phi_{2}(t)=-\alpha_{2} g(t) \sin \left(2 \pi f_{c} t\right) .
$$

(i) Find the positive constants α_{1} and α_{2}.
(ii) Draw the corresponding constellation (with respect to $\phi_{1}(t)$ and $\phi_{2}(t)$).
(c) $\left\{s_{m}(t)=1_{[0,2]}(t) \cos (\pi m t), \quad m=1,2,3\right\}$

Consider three orthonormal signals: $\left\{\phi_{m}(t)=\alpha_{m} 1_{[0,2]}(t) \cos (\pi m t), \quad m=1,2,3\right\}$
(i) Find the positive constants α_{1}, α_{2}, and α_{3}.
(ii) Draw the corresponding constellation (with respect to $\phi_{1}(t), \phi_{2}(t)$, and $\phi_{2}(t)$).

Problem 4. In a binary antipodal signaling scheme, the message S is randomly selected from the alphabet set $\mathcal{S}=\{-3,3\}$ with $p_{1}=P[S=-3]=0.3$ and $p_{2}=P[S=3]=0.7$. The message is corrupted by an independent additive noise N which is uniform on $[-4,4]$.
(a) Find the pdf of the noise.
(b) Find the MAP detector $\hat{s}_{\text {MAP }}(r)$.
(c) Evaluate the error probability of the MAP detector.

Problem 5. In a binary antipodal signaling scheme, the message S is randomly selected from the alphabet set $\mathcal{S}=\{-3,3\}$ with $p_{1}=P[S=-3]=0.3$ and $p_{2}=P[S=3]=0.7$. The message is corrupted by an independent additive exponential noise N whose pdf is

$$
f_{N}(n)= \begin{cases}\frac{1}{2} e^{-n / 2}, & n \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the MAP detector $\hat{s}_{\text {MAP }}(r)$.
(b) Evaluate the error probability of the MAP detector.

Problem 6. In a ternary signaling scheme, the message S is randomly selected from the alphabet set $\mathcal{S}=\{-1,1,4\}$ with $p_{1}=P[S=-1]=0.3=p_{2}=P[S=1]$ and $p_{3}=$ $P[S=4]=0.4$. The message is corrupted by an independent additive Gaussian noise $N \sim \mathcal{N}(0,2)$.
(a) Find the average signal energy ${ }^{11} E_{s}$.
(b) Find the MAP detector $\hat{s}_{\text {MAP }}(r)$.

[^0](c) Indicate the decision regions of the MAP detector in part (b).
(d) Evaluate the error probability of the MAP detector.

Problem 7. In a standard quaternary signaling scheme, the message S is equiprobably selected from the alphabet set $\mathcal{S}=\left\{-\frac{3 d}{2},-\frac{d}{2}, \frac{d}{2}, \frac{3 d}{2}\right\}$. The message is corrupted by an independent additive exponential noise N whose pdf is

$$
f_{N}(n)= \begin{cases}\lambda e^{-\lambda n}, & n \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the average symbol energy.
(b) Find the average energy per bit.
(c) Find the MAP detector $\hat{s}_{\text {MAP }}(r)$.
(d) Evaluate the error probability of the MAP detector.
(e) Let $\lambda=\frac{1}{\sigma}$. (This is to set $\operatorname{Var} N=\sigma^{2}$ as in the case for Gaussian noise.) Plot $\frac{E_{b}}{\sigma^{2}}$ vs. probability of error $P(\mathcal{E})$. Consider $\frac{E_{b}}{\sigma^{2}}$ from -30 to 10 dB .

Extra Questions

Here are some optional questions for those who want more practice.
Problem 8. Suppose $s_{1}(t)=\operatorname{sinc}(5 t)$ and $s_{2}(t)=\operatorname{sinc}(7 t)$. Note that in this class, we define $\operatorname{sinc}(x)=\frac{\sin x}{x}$. Find
(a) $E_{s_{1}}$,
(b) $E_{s_{2}}$, and
(c) $\left\langle s_{1}(t), s_{2}(t)\right\rangle$.

Hint: Use Parseval's theorem to evaluate the above quantities in the frequency domain. (Review: See 2.43 on p. 22 and Example 2.44 on p. 23 of ECS332 2018 lecture notes and Problem 6 in ECS332 2018 HW3.)

Problem 9. Prove the following facts with the help of Fourier transform. (Hint: inner product in the frequency domain, Parseval's theorem)
(a) The energy of $p(t)=g(t) \cos \left(2 \pi f_{c} t+\phi\right)$ is $E_{g} / 2$.
(b) $g(t) \cos \left(2 \pi f_{c} t\right)$ and $-g(t) \sin \left(2 \pi f_{c} t\right)$ are orthogonal.

Is there any condition(s) on $g(t)$ that we need to assume?

[^0]: ${ }^{1}$ Same as "average symbol energy" or "average energy per symbol" or "average energy per signal"

