\qquad

ECS 452: Digital Communication Systems 2018/2
 WW 3 - Due: Feb 22, 4 PM

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 6 pages.
(b) (1 pt) Work and write your answers directly on these provided sheets (not on other blank sheet(s) of paper). Hard-copies are distributed in class.
(c) (1 pt) Write your first name and the last three digits of your student ID on the upper-right corner of this page.
(d) $(8 \mathrm{pt})$ Try to solve all non-optional problems.
(e) Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Problem 1. Continue from the Example 2.40 in the lecture. A memoryless source emits two possible message $\mathrm{Y}(\mathrm{es})$ and $\mathrm{N}(\mathrm{o})$ with probability 0.9 and 0.1 , respectively.
(a) Calculate the entropy (per source symbol) of this source.

$$
H(x)=-\sum_{\alpha} p_{x}(a) \log _{2} p_{x}(x)=0.469 \text { bits per symbol }
$$

(b) Find the expected codeword length per symbol of the Huffman binary code for the third-order extensions of this source.

$\mathbb{E}\left[l\left(x_{1}, x_{1}, x_{3}\right)\right]=1.5980$ bits per the ce source symbols $\Rightarrow L_{3}=0.5327$ bits per source symbol

Problem 2. Consider a BSC whose crossover probability for each bit is $p=0.35$. Suppose $P[X=0]=0.45 . \equiv \rho_{0}$
$1-p=0.65$

$$
p_{1}=1-p_{0}=1-0.45=0.55
$$

(a) Draw the channel diagram.

(b) Find the channel matrix \mathbf{Q}.

Method $\left.\left.1 \underset{\sim}{2}=\begin{array}{cc}x \\ 0 & 0 \\ 1-p & 1 \\ p & 1-p\end{array}\right]=\begin{array}{l}x y \\ 0\end{array}\right]\left[\begin{array}{ll}0.65 & 0.35 \\ 0.35 & 0.65\end{array}\right]$
(c) Find the joint mf matrix \mathbf{P}.
the row vector P_{-}of input probabilities: $\left.P_{-}=\left[\begin{array}{ll}P[x=0\end{array}\right] \quad P[x=1]\right]=\left[\begin{array}{ll}p_{0} & p_{1}\end{array}\right]=\left[\begin{array}{ll}0.45 & 0.55\end{array}\right]$
To get the matrix P, we simply scale each row of matrix Q by the corresponding $p(x)$

$$
\text { Method 1: } \quad-\sigma=\left[\begin{array}{ll}
0.485 & 0.515
\end{array}\right]
$$

(d) Find the row vector $\underline{\mathbf{q}}$ which contains the emf of the channel output Y.

Method 2: of $=p Q=\left[\begin{array}{ll}0.45 & 0.55\end{array}\right]\left[\begin{array}{ll}0.65 & 0.35 \\ 0.35 & 0.65\end{array}\right]=\left[\begin{array}{ll}0.485 & 0.515\end{array}\right]$
(e) Analyze the performance of all four reasonable detectors for this binary channel. Complate the table below:
$Q=\left[\begin{array}{cc}1-p & p \\ p & 1-p\end{array}\right]$

$\hat{x}(y)$	$\hat{x}(0)$	$\hat{x}(1)$	$P(\mathcal{C})$	$P(\mathcal{E})=1-\mathrm{P}(C)$
y	0	1	$0.65\left(p_{0}+p_{1}\right)=0.65$	0.35
1	1	0	$0.35\left(p_{0}\right)=0.35$	

$=x_{1}\left[\begin{array}{cc}0 & 1 \\ 0.65 & 0.35 \\ 0.35 & 0.65\end{array}\right] \xrightarrow[x p_{1}]{\times p_{0} \times y} 0$
The value of $\hat{x}(y)$ tell us which row to select in the column y of the P matrix.

$$
Q(0 \mid 0)=0.65, \quad Q(1 \mid 1)=0.45
$$

Problem 3. Consider a BAC whose $Q(1 \mid 0)=0.35$ and $Q(0 \mid 1)=0.55$. Suppose $P[X=0]=$ $0.4=p_{0} \quad \Rightarrow p_{1}=1-0.4=0.6$ In some of these parts, we will also try to derive the answer in a general form.
(a) Draw the channel diagram. So, we will start with $Q(1 \mid 0)=\alpha$ and $Q(0 \mid 1)=\beta$.

To get the matrix P, we simply scale each row of matrix Q by the
corresponding $p(x)$.
(b) Find the j@int poof matrix \mathbf{P}.

First, we find the Q matrix,

$$
Q={ }_{0}\left[\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array} \xrightarrow{x}+p_{0}+\left[\begin{array}{ll}
p_{0}(1-\alpha) & p_{0} \alpha \\
\left(1-p_{0}\right) \beta & (1-\beta)\left(1-p_{0}\right)
\end{array}\right]=p\right.
$$

Method 1: Recall that $\mathcal{O}=p Q$.

$$
\left[\begin{array}{ll}
0.59 & 0.41
\end{array}\right]
$$

For this question, $p_{-}=\left[\begin{array}{ll}p_{0} & 1-\rho_{0}\end{array}\right]=\left[\begin{array}{ll}0.4 & 0.6\end{array}\right]$.
Therefore, $\quad q_{f}=\left[\begin{array}{ll}0.4 & 0.6\end{array}\right]\left[\begin{array}{ll}0.26 & 0.14 \\ 0.33 & 0.27\end{array}\right]=\left[\begin{array}{ll}0.59 & 0.41\end{array}\right]$
(d) Analyze the performance of all four reasonable detectors for this binary channel. Complate the table below:

| $\hat{x}(y)$ | $\hat{x}(0)$ | $\hat{x}(1)$ | $P(\mathcal{C})$ | $P(\mathcal{E})=1$ |
| :---: | :---: | :---: | :---: | :---: | -PC)

10.55
$0.45 \xrightarrow[\times 0.6]{\longrightarrow}$

The convention for our class is that these numbers are ordered in $\quad{ }_{1} \quad\left[\begin{array}{llll}1 \\ 0.5 & 0^{2} & 0.2 & 0.3\end{array}\right]$
Problem 4 . Consider a DMC whose $\mathcal{X} \stackrel{\text { the }}{=}\{1,2,3\}, \mathcal{Y} \stackrel{\text { mart. }}{=}\{1,2,3\}$, and $Q=2$
Suppose the input probability vector is $\underline{\mathbf{p}}=\left[\left(0.2,0^{2} .4,0.4\right]\right.$.
(a) Find the joint mf matrix \mathbf{P}. We can get the P matrix by sczing each row of the Q matrix using the corresponding input proba/olity $p(x)$.

(iii) $P[X=1, Y=2]=0.04$
(iv) $P[Y=2 \mid X=1]=0.2$

(vi) Find the error probability of the naive decoder. Naive Decoder : $\hat{x}_{\text {Naive }}(y)=y$

$$
\begin{aligned}
& P(C)=0.10+0.16+0.24=0.5 \\
& P(\varepsilon)=1-P(C)=1-0.5=0.5
\end{aligned}
$$

For naive decoder, look at each column of P and select (circle) the element whose corresponding x value is the same as y in that column.
(vii) Find the error probability of the (DIY) decoder $\hat{x}(y)=4-y . \Rightarrow$ Decoder table:

$$
\begin{aligned}
& P(C)=0.08+0.16+0.06=0.30 \\
& P(\varepsilon)=1-0.30=0.70
\end{aligned}
$$

For DIY decoder, look at each column of P and select the element whose corresponding x value is the same as $\hat{x}(y)$ in the decoder table.

Problem 5. A DMC has $\mathcal{X}=\{0,1\}$ and $\mathcal{Y}=\{1,2,3\}$. The following decoding table is used to decode the channel output.

Change all ' 2 ' to ' 1 '.

y	$\hat{x}(y)$
1	0
2	1
3	0

Change all ' 1 ' and ' 3 ' to ' 0 '
Suppose the channel output string is 212213221133122122132 .
(a) Find the corresponding decoded string.

101100110000011011001

(b) Suppose the channel input string is prodluced frdm an ASCII source encoder by the command dec2bin(SourceStripg, 7) in MATLAB. Assume that there is no channel decoding error. Find the corresponding spurce string.
(There is no need to actually use MATLAB to so ve this problem.
Hint: See pages 19 and 28-29 of the slides, for Ch

YAY

A Y

Extra Questions

Here are some optional questions for those who want more practice.
Problem 6. Optimal code lengths that require one bit above entropy: The source coding theorem says that the Huffman code for a random variable X has an expected length strictly less than $H(X)+1$. Give an example of a random variable for which the expected length of the Huffman code (without any source extension) is very close to $H(X)+1$.
We want to come up with some simple example. Therefore, we shall start by considering the Bernoulli RV X which has only two possible values:
Consider $x \sim \operatorname{Bernoulli}\left(p_{1}\right): p(\alpha)= \begin{cases}p_{1}, & x=1, \\ 1-p_{1}, & \alpha=0, \\ 0, & 0+\text { herwise, }\end{cases}$
Because there are only two possible values, the pairing in the huffman coding process must be between these two values:

x	$p(x)$		
0	$1-p_{1}$	0_{1}	$c(x)$
:---:			
1			

Therefore, Huffman coding (without extension) always needs 1 bit per symbd.

You may recall that in Section 2.4, this expression is called the binary entropy function. The plot of this function is shown in the lecture notes; it is sketches below:

$$
\begin{aligned}
& \text { Note that to get this function to be } \approx 0 \text {, } \\
& \text { we need to consider } p_{1} \approx 0 \text { or } p_{1} \approx 1 \text {. }
\end{aligned}
$$

Also note that we don't want to have $p_{1}=0$ or $p_{1}=1$ because they would make our RV X degenerated (deterministic). For degenerated RV, we don't have to waste any bit to convey its value. (The value is already pre-determined.) For example, if $p_{1}=1$, we know that $\mathrm{P}[\mathrm{X}=1]=1$ and hence $\mathrm{X} \equiv 1$ all the time. There is no uncertainty. Anyone can guess the value of X with 100% accuracy by simply guessing the value 1 every time. Alternatively, we may think of the situation here as sending the empty string (ε) to the receiver.
So, $\mathbb{E}[l(x)]=\mathbb{E}[0]=0$.
Because $H(x)$ is also 0 , we have $\mathbb{E}[f(x)]=H(x)$ and not $H(x)+1$.
Move formally we can take $\lim _{p_{1} \rightarrow 0}$ or $\lim _{p_{1} \rightarrow 1}$ on the function and show that $H(x) \rightarrow 0$.

So, if p_{1} is close to 1 or 0 , the entropy will be almost 0 .
But we still need $\mathbb{E}[\ell(x)]=1$ bit to send x.
so, the expected length will be very clove to $H(x)+1$.

Problem 7. Continue from the Example 2.40 in the lecture and Problem 1. A memoryless source emits two possible message $\mathrm{Y}(\mathrm{es})$ and $\mathrm{N}(\mathrm{o})$ with probability 0.9 and 0.1 , respectively.
(a) Use MATLAB to find the expected codeword length per (source) symbol of the Huffman binary code for the fourth-order extensions of this source.
(b) Use MATLAB to plot the expected codeword length per (source) symbol of the Huffman binary code for the n th-order extensions of this source for $n=1,2, \ldots, 8$.

We first need to list all the probabilities for the (extended) source string (vector/block.)

We then put together these value in a pmf vector using for loop.

Idea 2: Use MATLAB's "kron" command

$$
\text { Defn. } \operatorname{kron}(A, B)=\left[\begin{array}{ccc}
a_{11} B & a_{12} B & \cdots \\
a_{21} B & a_{22} B & \cdots \\
\vdots & & \ddots
\end{array}\right]
$$

Observe that the pmf used for the $n^{\text {th }}$-order source extension is the kronecker product of
the pmf used for the $1^{\text {st }}$-order extension
and

$$
\text { the poi used for the }(n-1)^{\text {th }} \text {-order extension }
$$

(a) $\mathbb{E}\left[\ell\left(x_{1} x_{2} x_{3} x_{4}\right)\right]=1.9702$ bits per 4 source symbols

$$
\Rightarrow L_{4}=0.4925 \text { bits per source symbol. }
$$

