ECS 452: In-Class Exercise \#19

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

3. Do not panic.
4. Consider three vectors: $\overrightarrow{\mathbf{v}}^{(1)}=\left(\begin{array}{c}-1 \\ 5 \\ -5 \\ 1\end{array}\right), \overrightarrow{\mathbf{v}}^{(2)}=\left(\begin{array}{c}2 \\ 0 \\ 0 \\ -2\end{array}\right)$, and $\overrightarrow{\mathbf{v}}^{(3)}=\left(\begin{array}{c}5 \\ -1 \\ 1 \\ -5\end{array}\right)$. Let $\overrightarrow{\mathbf{e}}^{(1)}=\frac{1}{2}\left(\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right)$ and $\overrightarrow{\mathbf{e}}^{(2)}=\frac{1}{2}\left(\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right)$.
a. Show that $\overrightarrow{\mathbf{e}}^{(1)}$ and $\overrightarrow{\mathbf{e}}^{(2)}$ are orthonormal.

$$
\left.\left.\begin{array}{l}
\text { (1) }\left\|\vec{e}^{(1)}\right\|^{2}=\left(\frac{1}{2}\right)^{2}\left(1^{2}+1^{2}+(-1)^{2}+(-1)^{2}\right)=\frac{1}{4} \times 4=1 \Rightarrow\left\|\vec{e}^{(1)}\right\|=1 \\
\text { (2) }\left\|\vec{e}^{(2)}\right\|^{2}=\left(\frac{1}{2}\right)^{2}\left((-1)^{2}+1^{2}+(-1)^{2}+1^{2}\right)=\frac{1}{4} \times 4=1 \Rightarrow\left\|\vec{e}^{(2)}\right\|=1
\end{array}\right\} \begin{array}{l}
\text { both have } \\
\text { unit length }
\end{array}\right\} \text { ortho- } \begin{aligned}
& \text { normal }
\end{aligned} \text { (3) }\left\langle\vec{e}^{(1)}, \vec{e}^{(2)}\right\rangle=\frac{1}{2} \times \frac{1}{2} \times(\underbrace{(1)(-1)+\underbrace{(1)(1)}_{1}+\underbrace{(-1)(-1)}_{1}+\underbrace{(-1)(1)}_{-1})=0 \Rightarrow \text { orthogonal }}_{0} \text { (}
$$

b. Calculate the following inner products:

$$
\begin{aligned}
& \left\langle\overrightarrow{\mathbf{v}}^{(1)}, \overrightarrow{\mathbf{e}}^{(2)}\right\rangle=\begin{array}{rrrr}
-1 & 5 & -5 & 1 \\
\frac{1}{2}\left(\begin{array}{lll}
-1 & 1 & -1
\end{array}\right. & 1)
\end{array} \\
& \frac{1}{2}(1+5+5+1)=6 \\
& \left\langle\overrightarrow{\mathbf{v}}^{(2)}, \overrightarrow{\mathbf{e}}^{(1)}\right\rangle=\frac{\begin{array}{cccc}
2 & 0 & 0 & -2 \\
\frac{1}{2}\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right. & -1)
\end{array}}{\frac{1}{2}(2+0+0+2)}=2 \\
& \begin{aligned}
\left\langle\overrightarrow{\mathbf{v}}^{(3)}, \overrightarrow{\mathbf{e}}^{(1)}\right\rangle= & \begin{array}{rrrr}
5 & -1 & 1 & -5 \\
\frac{1}{2}\left(\begin{array}{llll}
1 & 1 & -1 & -1
\end{array}\right)
\end{array}
\end{aligned} \\
& \frac{1}{2}\left(\begin{array}{lll}
5 & -1 & -1 \\
\hline
\end{array}\right)=4
\end{aligned}
$$

c. Suppose we use $\overrightarrow{\mathbf{e}}^{(1)}$ and $\overrightarrow{\mathbf{e}}^{(2)}$ as the new axes. Find the corresponding vectors $\widetilde{\mathbf{c}}^{(1)}, \overrightarrow{\mathbf{c}}^{(2)}$, and $\overrightarrow{\mathbf{c}}^{(3)}$ that represent $\overrightarrow{\mathbf{v}}^{(1)}, \overrightarrow{\mathbf{v}}^{(2)}$, and $\overrightarrow{\mathbf{v}}^{(3)}$ in the new coordinate system defined by $\overline{\mathbf{e}}^{(1)}$ and $\widetilde{\mathbf{e}}^{(2)}$.

$$
\begin{aligned}
& \vec{c}^{(1)}=\binom{\left\langle\vec{v}^{(1)}, \vec{e}^{(1)}\right\rangle}{\left\langle\vec{v}^{(1)}, \vec{e}^{(2)}\right\rangle}=\binom{4}{6} \\
& \vec{c}^{(2)}=\binom{\left\langle\vec{v}^{(2)}, \vec{e}^{(1)}\right\rangle}{\left\langle\vec{v}^{(2)}, \vec{e}^{(2)}\right\rangle}=\binom{2}{-2} \\
& \vec{c}^{(3)}=\binom{\left\langle\vec{v}^{(3)}, \vec{e}^{(1)}\right\rangle}{\left\langle\vec{v}^{(3)}, \vec{e}^{(2)}\right\rangle}=\binom{4}{-6}
\end{aligned}
$$

