ECS 452: In-Class Exercise \#14

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: 22 / 03 / 2019			
Name			
Prapun	5	5	5

Consider a block code whose generator matrix is

$$
\mathbf{G}=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

1. Find the length k of each message block
\mathbf{G} has 6 columns. Therefore, $n=6$.
2. Find the code length n
\mathbf{G} has 3 rows. Therefore, $k=3$.
3. In the table below, list all possible data (message) vectors $\underline{\mathbf{b}}$ in the leftmost column (one in each row). Then, find the corresponding codewords $\underline{\mathbf{x}}$ and their weights in the second and third columns, respectively.

$\underline{\mathbf{b}}$	$\underline{\mathbf{x}}$	$w(\underline{\mathbf{x}})$
$b_{1} b_{2} b_{3}$	$x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$	
000	000000	0
001	101010	3
010	001101	3
011	100111	4
100	110001	3
101	011011	4
110	111100	4
111	010110	3

First, we list all possible $\underline{\mathbf{b}}$.
Next, from $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}$, we can calculate the codeword $\underline{\mathbf{x}}$ corresponding to each $\underline{\mathbf{b}}$ one by one. Alternatively, by considering $\underline{\mathbf{b}}=\left[b_{1} b_{2} b_{3}\right]$ and carrying out the multiplication $\underline{\mathbf{x}}=$ $\left[b_{1} b_{2} b_{3}\right] \mathbf{G}$, we have
$\underline{\mathbf{x}}=\left[\begin{array}{lllll}b_{1} \oplus b_{3} & b_{1} & b_{2} \oplus b_{3} & b_{2} & b_{3}\end{array} b_{1} \oplus b_{2}\right]$.
So, each "column" of the answer for $\underline{\mathbf{x}}$ can be calculated accordingly. In particular,

- the $2^{\text {nd }}, 4^{\text {th }}$, and $5^{\text {th }}$ columns are simply copied from the columns for b_{1}, b_{2}, and b_{3} respectively,
- the $1^{\text {st }}$ column is simply the sum of the columns for b_{1} and b_{3},
- the $3^{\text {rd }}$ column is simply the sum of the columns for b_{2} and b_{3}
- the $6^{\text {th }}$ column is simply the sum of the columns for b_{1} and b_{2}.

4. Find the minimum distance $d_{\text {min }}$ for this code.

If the code is linear, then $d_{\text {min }}=\min _{\underline{\underline{x}} \neq \underline{0}} w(\underline{\mathbf{x}})=3$.
Is this a linear code? On page 34 of the lecture slides, we noted that if a code is generated by plugging in every possible $\underline{\mathbf{b}}$ into $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}$, then the code will automatically be linear. This is exactly how the code in this problem is created. [See the next page for the proof of this property.]

Fact: If a code is generated by plugging in every possible $\underline{\mathbf{b}}$ into $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}$, then the code will automatically be linear.

Proof
If \mathbf{G} has k rows. Then, $\underline{\mathbf{b}}$ will have k bits. We can list them all as $\underline{\mathbf{b}}^{(1)}, \underline{\mathbf{b}}^{(2)}, \ldots, \underline{\mathbf{b}}^{\left(2^{k}\right)}$. The corresponding codewords are

$$
\underline{\mathbf{x}}^{(i)}=\underline{\mathbf{b}}^{(i)} \mathbf{G} \text { for } i=1,2, \ldots, 2^{k} .
$$

Let's take two codewords, say, $\underline{\mathbf{x}}^{\left(i_{1}\right)}$ and $\underline{\mathbf{x}}^{\left(i_{2}\right)}$. By construction, $\underline{\mathbf{x}}^{\left(i_{1}\right)}=\underline{\mathbf{b}}^{\left(i_{1}\right)} \mathbf{G}$ and $\underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{2}\right)} \mathbf{G}$. Now, consider the sum of these two codewords:

$$
\underline{\mathbf{x}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{1}\right)} \mathbf{G} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)} \mathbf{G}=\left(\underline{\mathbf{b}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}\right) \mathbf{G}
$$

Note that because we plug in every possible $\underline{\mathbf{b}}$ to create this code, we know that $\underline{\mathbf{b}}^{\left(i_{i}\right)} \oplus \underline{\mathbf{b}}^{\left(i^{2}\right)}$ should be one of these $\underline{\mathbf{b}}$. Let's suppose $\underline{\mathbf{b}}^{\left(i_{i}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{3}\right)}$ for some $\underline{\mathbf{b}}^{\left(i_{j}\right)}$. This means

$$
\underline{\mathbf{x}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{j}\right)} \mathbf{G} .
$$

But, again, by construction, $\underline{\mathbf{b}}^{\left(i_{j}\right)} \mathbf{G}$ gives a codeword $\underline{\mathbf{x}}^{\left(i_{j}\right)}$ in this code. Because the sum of any two codewords is still a codeword, we conclude that the code is linear.

