ECS 452: In-Class Exercise \# 11

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

Date: $\mathbf{2 0} / \underline{\mathbf{0 3}} / 2018$			
Name	ID		
Prapun	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$

1. Assume $\mathrm{GF}(2)$. Calculate the following quantities:
a. $1 \oplus 1=0$
b. $\quad 1 \oplus 1 \oplus 1=(1 \oplus 1) \oplus 1=0 \oplus 1=1$
c. $1 \cdot 0=0$
d. $1 \cdot 0 \cdot 1=0$
e. $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \oplus\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 \oplus 1 & 1 \oplus 0 & 1 \oplus 1\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$
f. $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right] \oplus\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0 \oplus 0 & 1 \oplus 1 & 1 \oplus 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] \quad$ Fact: $\underline{x} \oplus+\underline{x}=\underline{0}$
g. $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}(1 \cdot 1) \oplus(0 \cdot 0) \oplus(1 \cdot 1) & (1 \cdot 0) \Theta(0 \cdot 1) \oplus(1 \cdot 0)\end{array}\right]=\left[\begin{array}{ll}0 & 0\end{array}\right]$

Alternatively, $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\left[\begin{array}{l}\underline{r}^{(1)} \\ \underline{r}^{(2)} \\ \underline{v}^{(3)}\end{array}\right]=\underline{V}^{(1)}(4) \underline{r}^{(3)}=\left[\begin{array}{ll}1 & 0\end{array}\right](4)\left[\begin{array}{ll}1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0\end{array}\right]$
2. A codeword $\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right]$ is sent over the BSC . Suppose the error pattern is $\underline{\mathbf{e}}=\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$. Find the observed vector at the receiver.

$$
\begin{array}{r}
y_{-}=x+t \in=\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right] \oplus\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right] \text {. means that the last two } \\
\text { bits of } x \text { are re ceived } \\
\text { in error. }
\end{array}
$$

3. A codeword $\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right]$ is sent over the $B S C$. Suppose the observed vector at the receiver is
$\underline{\mathbf{y}}=\left[\begin{array}{lll}0 & 1 & 1\end{array} 1\right]$. Find the error pattern. $\quad\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right]$ Alternatively, the error

$$
\underline{0}-1 \times 0
$$

$$
y=x \oplus e
$$

$\underline{x} \oplus y=x(\pm)+e$
4. A codeword is sent over the BSC.

Alternatively, $e=\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$

ECS 452: In-Class Exercise \# 12.1

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

3. Do not panic.
4. A linear block code uses the following generator matrix $\mathbf{G}=$| 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| | 0 | 0 | 1 | $\mathrm{~g}^{(2)}$

a. Find the code length n The generator marix has 4 columns. $n=4$
b. Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{ll}0 & 1\end{array}\right]$

$$
\underline{x}=\underline{b} G=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right]
$$

c. Find the codebook for this code.

Method : $\underset{\sim}{x}=\sum_{i} b_{i} g^{(i)}$ where $b_{i}=$ the $i^{\text {th }}$ element in \underline{b} methods.

2. Each row of the table below correspond to a code that uses single-parity-check. The error pattern is given.
Find the corresponding values of codeword length n, code dimension k, and Indicate whether the given error pattern is detectable.

Direct multiplication like this is

 OK when we only have to find one codeword. However, in the next part, we need to find all of them; so we will use other

ECS 452: In-Class Exercise \# 12.2

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $\underline{\mathbf{3 0}} / \underline{\mathbf{0 3}} / 2018$	ID $_{\text {(asa die }}$		
Name	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$
Prapun			

Consider a block code whose generator matrix is

$$
\mathbf{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

1. Find the code length n

The \#columns of \mathbf{G} is 6
2. Find the length k of each message block

The \#rows of \mathbf{G} is 3
3. In the table below, list all possible data (message) vectors $\underline{\mathbf{b}}$ in the leftmost column (one in each row).

Then, find the corresponding codewords $\underline{\mathbf{x}}$ and their weights in the second and third columns, respectively.

$$
\begin{aligned}
\underline{x}= & \underline{b} G=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right] G \\
= & {\left[\begin{array}{lllll}
\underbrace{}_{\begin{array}{l}
\text { simply copy the } \\
b_{1}
\end{array} b_{2}} b_{3} & b_{1} \oplus b_{3} & b_{2} \oplus b_{3} & b_{1} \oplus & b_{2}
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The } 4^{\text {th }} \text { colvan of } 6 \text { is }\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{\top} \text {. Thereforeve, the } 4^{\text {th }} \text { element } \\
& \text { of } \underline{x} \text { is the sum of the } 1^{\text {st }} \text { and } 3^{\text {rid }} \text { elements of } \underline{\underline{b}} \text {. } \\
& \text { The } 5^{\text {th }} \text { column of } 6 \text { is }\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]^{\top} \text {. Therefore, the } 5^{\text {th }} \text { element } \\
& \text { of } \underline{x} \text { is the sum of the } 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { elements of } \underline{b} \text {. } \\
& \text { The } 6^{t h} \text { column of } d \text { is }\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]^{\top} \text {. Therefore, true } 6^{\text {th }} \text { element } \\
& \text { of } \underline{x} \text { is the sum of the } 1^{\text {st }} \text { and } 2^{\text {nd }} \text { elements of } \underline{b} \text {. }
\end{aligned}
$$

4. Find the minimum distance $d_{\text {min }}$ for this code.

ECS 452: In-Class Exercise \#13

Instructions

1. Separate into groups of no more than three persons.
2. The group cannot be the same as your former group.
3. Only one submission is needed for each group.
4. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
5. Do not panic.

Date: $\underline{\mathbf{0}} / \underline{\mathbf{0}} / 2017$	\mid		
Name	ID		
Prapun	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$

1. Consider a linear block code that uses parity checking on a square array:

Each parity bit p_{i} is calculated such that the corresponding row or column has even parity.
Suppose the following bits arrangement is used in the codeword:

$$
\underline{\mathbf{x}}=\left(\begin{array}{llllllll}
b_{1} & p_{1} & p_{2} & b_{2} & b_{3} & b_{4} & p_{3} & p_{4}
\end{array}\right)
$$

a. Find the generator matrix, G

b. Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]$.

$$
\underline{x}=\underline{b} G=\left[\begin{array}{lll}
0 & 1 & 1
\end{array} 0\right]\left[\begin{array}{l}
g^{(1)} \\
g^{(2)} \\
g^{(3)} \\
g^{(4)}
\end{array}\right]=g^{(2)} \oplus \underline{g}^{(3)}=\frac{00110001}{01001010} 0
$$

c. Find the parity-check matrix \mathbf{H}.

Identity matrix in the data positions becomes identity
matrix in the parity positions

$$
G=\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

$\left[\begin{array}{llllllll}1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]=H$

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Date :10/04/2018			
Name	ID		
Prapun	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$

3. Do not panic.

Consider a block code whose generator matrix is

$$
\mathbf{G}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \mathbf{L}_{3}^{1} \begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)^{P}
$$

a. Find the parity check matrix \mathbf{H} of this code.

$$
\begin{aligned}
& H=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \text { Suppose we receive } \mathbf{Y}=1001 \\
& \text { i. Find the syndrome vectors } \\
& \underline{y}=Y H^{\top}=\left[\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)\right]^{\top}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{\top}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

ii. Find the decoded codeword $\underline{\underline{\hat{x}}}$

The syndrome s is the same as the last column of H. Therefore, $\hat{\underline{e}}=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$ and

$$
\hat{x}=\hat{y}-\hat{e}=\hat{y} \oplus \hat{e}=[111000]
$$

iii. Find the decoded message $\underline{\hat{\mathbf{b}}}$.

From 6, we have I_{3} in the front, so the message b will be the first three bits of the codeword xe.

ECS 452: In-Class Exercise \#15

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $\mathbf{2 0} / \underline{\mathbf{0 4}} / 2018$			
Name	ID		
Prapun	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$

Consider a convolution encoder represented by the following diagram

(a) Draw the corresponding state (transition) diagram

First, observe that this encoder uses a shift register with two FFs which is the same as the one discussed in lecture. Therefore, the arrows will be the same as what we had in the lecture.
Note, however, that the connections that produce the outputs are different from the encoder in lecture Therefore we cimnle nead to find the nutnuts

(b) Suppose the information bits (the message bits) are $\underline{\mathbf{b}}=11101$.
Find the corresponding codeword $\underline{\mathbf{x}}$
i. by using the direct method (filling out the table below) without the help of the state diagram from part (a).
Note that the final output is one row vector resulting from interleavina the unber and lower outbuts.

$$
\underline{x}=1100011010
$$

and

ii. by "tracing" the corresponding path on the state diagram derived an part (a) Draw/highlight your trace on the state diagram in part (a) using different pen color.

[^0]$\underline{\mathbf{x}}=1100011.010$

ECS 452: In-Class Exercise \#16

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $\mathbf{2 4}$ / $\underline{04} / 2018$		
Name	ID	
Prapun	$\mathbf{5}$	$\mathbf{5}$
	$\mathbf{5}$	

Consider a convolutional encoder whose trellis diagram is given below

1. Suppose the data vector is $\underline{\mathbf{b}}=[110]$. Find the corresponding codeword $\underline{\mathbf{x}}$.

Read from the highlighted path: [1101011

2. Suppose that we observe $\underline{\mathbf{y}}=110110$ at the input of the minimum distance decoder.

The decoder uses Viterbi's algorithm.
a. Write down
(1) all the distance values on the branches and
(2) the (chosen) cumulative distance values inside all the circles in the figure above.
b. Find the decoded codeword $\underline{\hat{\mathbf{x}}}$ and the decoded message $\underline{\hat{\mathbf{b}}}$.

Read from the highlighted path:

$\underline{\hat{\mathbf{x}}}=\frac{[110110]}{\Gamma} \quad \underline{\hat{\mathbf{b}}}=\underline{[111]}$.

ECS 452: In-Class Exercise \#17

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

4. Suppose $\overrightarrow{\mathbf{v}}=\left(\begin{array}{c}4 \\ 0 \\ -3\end{array}\right)$ and $\overrightarrow{\mathbf{u}}=\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$.
a. Find $\langle\overrightarrow{\mathbf{v}}, \stackrel{\rightharpoonup}{\mathbf{u}}\rangle=(4)(2)+(0)(1)+(-3)(-2)=8+0+6=14$

For $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)^{\top}$ and l
$\vec{u}=\left(w_{1}, w_{3}, w_{3}\right)^{\top}$,
we have
$\left\langle\overrightarrow{v_{2}}, \overrightarrow{u_{2}}\right\rangle=v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3}$
b. Find $\langle\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{u}}\rangle=2^{2}+1^{2}+(-2)^{2}=4+1+4=9$

For $\vec{u}=\left(u_{1}, u_{v} u_{s}\right)^{\top}$,
we have
$\left\langle\overrightarrow{u_{1}}, \vec{u}\right\rangle=u_{1} u_{1}+u_{6} u_{2}+u_{3} u_{3}=u_{1}^{2}+u_{2}^{2}+u_{3}^{3}$
c. Find $\langle\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{v}}\rangle=4^{2}+0^{2}+(-3)^{2}=16+9=25$

Similar to part (b),
for $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)^{T}$,
we have
$\langle\overrightarrow{\vec{v}}, \vec{u}\rangle=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}$
d. Find $\|\overrightarrow{\mathbf{v}}\| \equiv \sqrt{\langle\vec{v}, \vec{v}\rangle}=\sqrt{25}=5$
e. Find $\|\overrightarrow{\mathbf{u}}\|=\sqrt{\langle\vec{u}, \vec{u}\rangle}=\sqrt{9}=3$
f. Find $\operatorname{proj}_{\vec{u}} \overrightarrow{\mathbf{v}} \equiv \underset{\vec{v}, \vec{u}\rangle}{\langle\vec{u}, \vec{u}\rangle} \vec{u}=\frac{14}{9}\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)=\left(\begin{array}{c}28 / 9 \\ 14 / 9 \\ -28 / 9\end{array}\right) \approx\left(\begin{array}{c}3.1111 \\ 1.5556 \\ -3.1111\end{array}\right)$ definition
Direct calculation:

$$
\vec{Z}=(4,0,-3)^{\top}-\frac{1}{9}(28,14,-28)^{\top}=\frac{1}{9}(8,-14,1)^{\top}
$$

g. Let $\overrightarrow{\mathbf{z}}=\overrightarrow{\mathbf{v}}-\operatorname{proj}_{\overline{\mathbf{u}}} \overrightarrow{\mathbf{v}}$. Find $\langle\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{z}}\rangle$. $\langle\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{z}}\rangle=\frac{1}{9}((2)(8)+(1)(-14)+(-2)(1))=\frac{1}{9} \times 0=0$.

We know that $\vec{p}=$ prop $_{\vec{k}} \overrightarrow{\vec{v}}$ and $\underbrace{\vec{v}=\vec{v}-\vec{p}}$ are always orthogonal.

Therefore, \vec{u} and \vec{z} are orthogonal and hence $\langle\vec{u}, \vec{z}\rangle=0$.
Alternatively,

$$
\begin{aligned}
& \text { Arively, } \\
& \left.\langle\vec{u}, \vec{z}\rangle=\langle\vec{u}, \vec{v}-\operatorname{proj} \vec{u} \vec{u}\rangle=\langle\vec{u}, \vec{v}\rangle-\langle\vec{u},\langle\vec{v}, \vec{u}\rangle, \vec{u}\rangle=\langle\vec{u}, \vec{v}\rangle-\frac{\vec{u}, \vec{u}\rangle}{\langle\vec{u}, \vec{u}\rangle}\langle\overrightarrow{\vec{u}}, \hat{u}\rangle, \vec{u}\right\rangle \\
& \langle\vec{u}\rangle
\end{aligned}
$$

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $\underline{\mathbf{0 1}} / \underline{\mathbf{0}} / 2018$			
Name	ID		
Prapun	$\mathbf{5}$	$\mathbf{5}$	
	$\mathbf{5}$		

Consider the two signals $s_{1}(t)$ and $s_{2}(t)$ shown below.

a. Find the energy of each signal.

$$
\begin{aligned}
& E_{1}=\int_{-\infty}^{\infty} s_{1}^{2}(t) d t=\int_{0}^{2} 2^{2} d t=\int_{0}^{2} 4 d t=\left.4 t\right|_{0} ^{2}=4 \times 2=8 \\
& E_{2}=\int_{-\infty}^{\infty} s_{2}^{2}(t) d t=\int_{0}^{4}\left(\frac{t}{2}\right)^{2} d t=\int_{0}^{4} \frac{t^{2}}{4} d t=\left.\frac{t^{3}}{12}\right|_{0} ^{4}=\frac{4 \times 4 \times 4}{12}=\frac{16}{3}
\end{aligned}
$$

b. Find their inner product $\left\langle s_{1}(t), s_{2}(t)\right\rangle$.

$$
\left\langle s_{1}(t), s_{2}(t)\right\rangle=\int_{-\infty}^{\infty} s_{1}(t) s_{2}(t) d t=\int_{0}^{2} 2 \times \frac{t}{2} d t=\int_{0}^{2} t d t=\frac{t^{2}}{2}=\frac{4}{2}=2
$$

c. Find and plot $\operatorname{proj}_{s_{1}(t)} s_{2}(t)$.

$$
\operatorname{proj}{D_{1}}_{A_{2}}=\frac{\left\langle D_{2}, A_{1}\right\rangle}{\left\langle A_{1}, A_{1}\right\rangle} A_{1}=\frac{2}{8}=\frac{1}{4} D_{1}= \begin{cases}1 / 2, & 0<t<2, \\ 0, & \text { otherwise } .\end{cases}
$$

ECS 452: In-Class Additional Example

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

Continue from Exercise \#18.
d. Suppose the Gram-Schmidt orthogonalization procedure (GSOP) (where the signals are applied in the order given) is used to find two orthonormal functions $\phi_{1}(t)$ and $\phi_{2}(t)$ that can be used as axes to represent $s_{1}(t)$ and $s_{2}(t)$.
i. Find and plot $\phi_{1}(t)$

$$
\begin{aligned}
& u_{1}(t)=D_{1}(t) \quad D_{1}=2 \sqrt{2} \phi_{1} \approx 2.83 \phi_{1} \\
& \phi_{1}(t)=\frac{\mu_{1}(t)}{\sqrt{E_{m_{1}}}}=\frac{D_{1}(t)}{\sqrt{E_{1}}}=\frac{1}{2 \sqrt{2}} D_{1}=\left\{\begin{array}{c}
1 / \sqrt{2}, \\
0,
\end{array}\right.
\end{aligned}
$$

ii. Find and plot $\phi_{2}(t)$.

$$
\begin{aligned}
& \mu_{2}(t)=\partial_{2}(t)-p r o j_{\mu_{1}} s_{2}=s_{2}(t)-\frac{1}{4} s_{1}(t) \\
& E_{\mu_{2}}=\int_{-\infty}^{\infty} u_{2}^{2}(t) d t=\int_{0}^{2}\left(-\frac{1}{2}+\frac{t}{2}\right)^{2} d t+\int_{2}^{4}\left(\frac{t}{2}\right)^{2} d t \\
& \\
& =\frac{1}{6}+\frac{1 m}{3}=\frac{1+28}{6}=\frac{29}{6} \quad \begin{array}{ll}
\sqrt{\frac{3}{58}}(t-1), & 0<t<2, \\
\sqrt{\frac{3}{58}} t, & 2 \leqslant t<4, \\
0, & \text { otherwise. }
\end{array}
\end{aligned}
$$

$D_{2}(t)=\frac{1}{4} D_{1}(t) r u_{2}(t)=\frac{1}{4} 2 \sqrt{2} \phi_{1}(t)+\sqrt{\frac{29}{6}} \phi_{2}(t)=\frac{1}{\sqrt{2}} \phi_{1}(t)+\sqrt{\frac{29}{6}} \phi_{2}(t) \approx 0.71 \phi_{1}(t)+2.2 \phi_{2}(t)$
iii. Find the two vectors, $\widetilde{\mathbf{s}}^{(1)}$ and $\overline{\mathbf{s}}^{(2)}$, that represent the two waveforms $s_{1}(t)$ and $s_{2}(t)$ in the new axes based on $\phi_{1}(t)$ and $\phi_{2}(t)$. Draw the corresponding constellation in the figure below.

$$
\begin{aligned}
& E_{\theta_{1}} \equiv \int_{-\infty}^{\infty} s_{1}^{2}(t) d t=\left\|s_{1}^{2}(t)\right\|^{2}=\left\|\partial^{(1)}\right\|^{2}=(2 \sqrt{2})^{2}+0^{2}=8 \\
& E_{A_{2}}=(1 / \sqrt{2})^{2}+(\sqrt{29 / 6})^{2}=\frac{16}{3} \\
&\left\langle s_{1}(t), s_{2}(t)\right\rangle=\left\langle\vec{s}^{(1)}, \vec{r}^{(2)}\right\rangle=\left(2 \sqrt{2} \times \frac{1}{\sqrt{2}}\right)+\left(0 \times \sqrt{\frac{29}{6}}\right) \\
&=2
\end{aligned}
$$

ECS 452: In-Class Exercise \# 19

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: 11/05/2018			
Name	ID ${ }_{\text {anas amich }}$		
Prapun	5	5	5

A digital communication system transmits a stream of bits by mapping each block o three bits one of the possible waveforms $s_{1}(t), s_{2}(t), \ldots, s_{M}(t)$. The waveform is then transmitted $\sqrt{ }$ a a communication channel which corrupts the waveform by independently adding a white noise process $N(t)$ whose power spectral density is given by $S_{N}(f) 16$ across all frequency.
a. What is the value of M ?
Three bits $\Rightarrow 8$ possibilities for the block
\Rightarrow need 8 different waveforms to represent 8 distinct block patterns
b. Suppose we apply GSOP to the M waveforms and get two orthonormal axes $\phi_{1}(t)$ and $\phi_{2}(t)$. Let $N_{j}=\left\langle N(t), \phi_{j}(t)\right\rangle$. Find
See 7.26f
i. $\mathbb{E}\left[N_{1}\right]=0$
ii. $\operatorname{Var}\left[N_{1}\right]=\frac{N_{0}}{2}=16$
iii. $\sigma_{N_{1}}=\sqrt{\operatorname{Var}\left[N_{1}\right]}=\sqrt{16}=4$
iv. $\mathbb{E}\left[N_{1} N_{2}\right]=0$

ECS 452: In-Class Exercise \#20

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $\underline{\mathbf{1 5}} / \underline{\mathbf{0}} / 2018$			
Name	ID		
Prapun	5	$\mathbf{5}$	$\mathbf{5}$

In a binary antipodal signaling scheme, the message S is randomly selected from the alphabet set $\mathcal{S}=\{-2,2\}$ with $p_{1}=P[S=-2]=0.6$ and $p_{2}=P[S=2]=0.4$. The message is corrupted by an independent additive noise N whose pdf is shown below:

a. What is the value of h ?

$$
\begin{aligned}
& \text { To be a pdf, we need } \int_{-\infty}^{\infty} f_{N}(n) d n=1 . \\
& \frac{1}{2} \times 8 \times h=1 \Rightarrow h=\frac{1}{4}
\end{aligned}
$$

b. Suppose the received symbol is $R=r$. Find the MAP detector $\hat{s}_{\text {MAP }}(r)$.

$$
\begin{aligned}
& \hat{\partial}_{\text {mAP }}(r)= \begin{cases}-2, & -6 r<0.4, \\
2, & 0.4<r<6, \\
\text { any, } & \text { otherwise }\end{cases} \\
&= \begin{cases}-2, & r<0.4, \\
2, & r \geqslant 0.4 .\end{cases} \\
& \Rightarrow \frac{3}{2} d_{2}+d_{2}^{2}=4 \\
& d_{2}=4 \times \frac{2}{5}=\frac{8}{5} \\
& \tau=2-d_{2}=2-\frac{8}{5}=\frac{2}{5}=0.4
\end{aligned}
$$

[^0]: See the trace in the diaaram on the

