ECS 452: In-Class Additional Example

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date:__/__/2018			
Name	ID		
	disil)		

Continue from Exercise \#18.

d. Suppose the Gram-Schmidt orthogonalization procedure (GSOP) (where the signals are applied in the order given) is used to find two orthonormal functions $\phi_{1}(t)$ and $\phi_{2}(t)$ that can be used as axes to represent $s_{1}(t)$ and $s_{2}(t)$.
i. Find and plot $\phi_{1}(t)$

$$
\begin{aligned}
& u_{1}(t)=s_{1}(t) \quad s_{1}=2 \sqrt{2} \varnothing_{1} \approx 2.83 \phi_{1} \\
& \phi_{1}(t)=\frac{u_{1}(t)}{\sqrt{E_{w_{1}}}}=\frac{\Delta_{1}(t)}{\sqrt{E_{1}}}=\frac{1}{2 \sqrt{2}} \Delta_{1}=\left\{\begin{array}{ccc}
1 / \sqrt{2}, & 0<t<2, & 2 \\
0, & \text { otherwi,e. } & t / 2
\end{array}\right.
\end{aligned}
$$

ii. Find and plot $\phi_{2}(t)$.

$$
\begin{aligned}
& \mu_{2}(t)=s_{2}(t)-p r o j r_{1} s_{2}=s_{2}(t)-\frac{1}{4} s_{1}(t) \\
& E_{u_{2}}=\int_{-\infty}^{\infty} u_{2}^{2}(t) d t=\int_{0}^{2}\left(-\frac{1}{6}+\frac{t}{2}\right)^{2} d t+\int_{2}^{4}\left(\frac{t}{2}\right)^{2} d t \\
& =\frac{1}{6}+\frac{1 m}{3}=\frac{1+28}{6}=\frac{29}{6} \quad\left[\begin{array}{ll}
\sqrt{\frac{3}{58}}(t-1), & 0<t<2, \\
\sqrt{\frac{3}{58}} t, & 2 \leqslant t<4, \\
0, & \text { othernise. }
\end{array}\right. \\
& \Phi_{2}(t)=\frac{\mu_{2}(t)}{\sqrt{E_{u_{4}}}}=\sqrt{\frac{6}{29}} \mu_{2}(t)=
\end{aligned}
$$

$$
\begin{aligned}
\phi_{2}(t) & =\frac{u_{2}(t)}{\sqrt{E_{\mu_{2}}}}=\sqrt{\frac{6}{29}} \mu_{2}(t)=\left\{\begin{array}{lll}
\sqrt{\frac{3}{58}}(t-1), & 0<t<2, & \sqrt{24 / 29} \\
\sqrt{\frac{3}{58}} t, & 2 \leqslant t<4, & -\sqrt{3 / 58} \\
0, & \text { othernise } .
\end{array}\right.
\end{aligned}
$$

$S_{2}(t)=\frac{1}{4} \delta_{1}(t) r \mu_{2}(t)=\frac{1}{4} 2 \sqrt{2} \phi_{1}(t)+\sqrt{\frac{29}{6}} \phi_{2}(t)=\frac{1}{\sqrt{2}} \phi_{1}(t)+\sqrt{\frac{29}{6}} \phi_{2}(t) \approx 0.71 \phi_{1}(t)+2.2 \phi_{2}(t)$
iii. Find the two vectors, $\overline{\mathbf{s}}^{(1)}$ and $\overline{\mathbf{s}}^{(2)}$, that represent the two waveforms $s_{1}(t)$ and $s_{2}(t)$ in the new axes based on $\phi_{1}(t)$ and $\phi_{2}(t)$. Draw the corresponding constellation in the figure below.

$$
\begin{aligned}
& \text { Double-checking: } \\
& E_{1}=2^{2} \times 2=4 \times 2=8 \\
& E_{2}=\frac{1}{2}+\frac{29}{6}=\frac{3}{6}+\frac{29}{6}=\frac{32}{6}=\frac{16}{3} \\
& \left\langle S_{1}, A_{2}\right\rangle=2 \sqrt{2} \times \frac{1}{\sqrt{2}}=2
\end{aligned}
$$

