ECS 452: In-Class Exercise # 12.1

Instructions

Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.

Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

2	Dο	not	panic

Date: 30 / Q3 / 2018					
Name	II	ID (last 3 digits)			
Prapun	5	5	5		
-					

1. A linear block code uses the following generator matrix $\,G=\,$

Find the code length n The generator marix has 4 columns.

Find the codeword for the message $\mathbf{b} = \begin{bmatrix} 0 & 1 \end{bmatrix}$

$$= b6 = [0 \ 1] \begin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix} = [1 \ 0 \ 0 \ 1]$$

Find the codebook for this code. c.

Direct multiplication like this is OK when we only have to find one codeword. However, in the next part, we need to find all of them; so we will use other be the ith element in 6 methods.

Method : Z	2 02 9 Where 22 100 Mineral 12 100 M
<u>b</u>	and $g^{(4)}$ = the i th row of G $X = G(4) = $
00	0000 = 0.9 1.9 1.9 2 = 5 6
01	
10 11	$0111 \sim 1.3^{(1)} \oplus 0.2^{(1)} = 3^{(1)} = [b_2 \ b_1 \ b_1 \oplus b_2]$
	1. 9 (1) 1. 2(2) = 3 (1) (1) The first The second The last
	and third bit is

2. Each row of the table below correspond to a code that uses **single-parity-check**. The error pattern is given.

Find the corresponding values of codeword length n, code dimension k, and Indicate whether the given error pattern is detectable.

Error Pattern	codeword length n	code dimension k	e is detectable (Yes or No?)
$\underline{\mathbf{e}} = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$	4	3	No
$\mathbf{e} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}$	5	4	Yes
$\mathbf{e} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}$	5	4	Yes
$\underline{\mathbf{e}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$	7	6	No

The length of vectors should all be the same. (Y = X (+) =) So, n = length of e

For single-parity-check code,