ECS 452: Digital Communication Systems 2015/2

HW 7 - Due: Not Due
Lecturer: Asst. Prof. Dr. Prapun Suksompong

Problem 1. Consider a convolutional encoder whose state diagram is given in Figure 7.1 .

Figure 7.1: State diagram for a convolutional encoder
(a) Find the code rate
(b) Suppose the data bits (message) are 0100101. Find the corresponding codeword.
(c) Find the data vector $\underline{\mathbf{b}}$ which gives the codeword $\underline{\mathbf{x}}=[001110111110110011]$

Problem 2. Consider a convolutional encoder whose trellis diagram is given in Figure 7.2 ,

Figure 7.2: State diagram for a convolutional encoder
(a) Find the code rate
(b) Suppose the data bits (message) are $\underline{\mathbf{b}}=[0100101]$. Find the corresponding codeword x.
(c) Find the data vector $\underline{\mathbf{b}}$ which gives the codeword $\underline{\mathbf{x}}=[001110111110]$.
(d) Suppose that we observe $\underline{\mathbf{y}}=[001110000101]$ at the input of the minimum distance decoder. Explain why we can easily find the decoded codeword $\underline{\hat{\mathbf{x}}}$ and the decoded message $\underline{\hat{b}}$ without applying the Viterbi algorithm.
(e) Suppose that we observe $\underline{\mathbf{y}}=[010101111110]$ at the input of the minimum distance decoder. Use Viterbi algorithm to find the decoded codeword $\underline{\hat{\mathbf{x}}}$ and the decoded message $\underline{\hat{\mathbf{b}}}$. Show your work on Figure 7.3 below.

Figure 7.3: State diagram for a convolutional encoder
Make sure that all the running (cumulative) path metric are shown and the discarded branches are indicated at every steps.

Problem 3. Consider the two signals $s_{1}(t)$ and $s_{2}(t)$ shown in Figure 7.4. Note that V and T_{b} are some positive constants. Your answers should be given in terms of them.

Figure 7.4: Signal set for Question 3
(a) Find the energy in each signal.
(b) Use the Gram-Schmidt orthogonalization procedure (GSOP) (where the signals are applied in the order given) to find two orthonormal functions $\phi_{1}(t)$ and $\phi_{2}(t)$ that can be used to represent $s_{1}(t)$ and $s_{2}(t)$.
(c) Find the two vectors that represent the two waveforms $s_{1}(t)$ and $s_{2}(t)$ in the new (signal) space based on the orthonormal basis found in the previous part. Draw the corresponding constellation.

Problem 4. Consider the two signals $s_{1}(t)$ and $s_{2}(t)$ shown in Figure 7.5. Note that V, α and T_{b} are some positive constants.

Figure 7.5: Signal set for Question 4
(a) Find the energy in each signal.
(b) Use the Gram-Schmidt orthogonalization procedure (GSOP) (where the signals are applied in the order given) to find two orthonormal functions $\phi_{1}(t)$ and $\phi_{2}(t)$ that can be used to represent $s_{1}(t)$ and $s_{2}(t)$.
(c) Plot $\phi_{1}(t)$ and $\phi_{2}(t)$ when $\alpha=\frac{T_{b}}{4}$.
(d) Find the two vectors $\boldsymbol{s}^{(1)}$ and $\boldsymbol{s}^{(2)}$ that represent the two waveforms $s_{1}(t)$ and $s_{2}(t)$ in the new (signal) space based on the orthonormal basis found in the previous part.
(e) Draw the corresponding constellation when $\alpha=\frac{T_{b}}{4}$.
(f) Draw $\boldsymbol{s}^{(2)}$ when $\alpha=\frac{k}{10} T_{b}$ where $k=1,2, \ldots, 9$.

Problem 5. In a ternary signaling scheme, the message S is randomly selected from the alphabet set $\mathcal{S}=\{-1,1,4\}$ with $p_{1}=P[S=-1]=0.41, p_{2}=P[S=1]=0.08$ and $p_{3}=P[S=4]=0.51$. Find the average signal energy E_{s}.

Problem 6. Consider a ternary constellation. Assume that the three vectors are equiprobable.
(a) Suppose the three vectors are

$$
s^{(1)}=\binom{0}{0}, \boldsymbol{s}^{(2)}=\binom{3}{0}, \text { and } \boldsymbol{s}^{(3)}=\binom{3}{3}
$$

Find the corresponding average energy per symbol.
(b) Suppose we can shift the above constellation to other location; that is, suppose that the three vectors in the constellation are

$$
\boldsymbol{s}^{(1)}=\binom{0-a_{1}}{0-a_{2}}, \boldsymbol{s}^{(2)}=\binom{3-a_{1}}{0-a_{2}}, \text { and } \boldsymbol{s}^{(3)}=\binom{3-a_{1}}{3-a_{2}} .
$$

Find a_{1} and a_{2} such that corresponding average energy per symbol is minimum.

Problem 7. Prove the following facts with the help of Fourier transform. (Hint: inner product in the frequency domain, Parseval's theorem)
(a) The energy of $p(t)=g(t) \cos \left(2 \pi f_{c} t+\phi\right)$ is $E_{g} / 2$.
(b) $g(t) \cos \left(2 \pi f_{c} t\right)$ and $-g(t) \sin \left(2 \pi f_{c} t\right)$ are orthogonal.

Is there any condition(s) on $g(t)$ for this technique to work?

