ECS 452: Digital Communication Systems 2015/2
HW 6 — Due: Apr 20

Lecturer: Asst. Prof. Dr. Prapun Suksompong

Instructions
(a) Solve all non-optional problems. (5 pt)

(i) Write your first name and the last three digit of your student ID on the upper-right
corner of every submitted page.

(ii) For each part, write your explanation/derivation and answer in the space provided.

(b) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(¢) Late submission will be rejected.

(d) Write down all the steps that you have done to obtain your answers. You may
not get full credit even when your answer is correct without showing how you get your

answer.
Problem 1. Consider a block code whose generator matrix is
100101
G=|010011
001110

(a) Suppose the message is b = [101]. Find the corresponding codeword x.
There are several equivalent ways to approach this problem.

1) We can simply use

%) See next part.

(b) In the provided table, list all possible data (message) vectors b in the left column
(one in each row). Then, find the corresponding codewords x and their weights in the
second and third columns, respectively.
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Derivation of the recipe for calculating the codewords in Q1b:
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(c¢) Find the minimum distance d,;, for this code.
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(d) Suppose we receive y = [111101].

(i) Minimum distance decoding:

i. Find the distance d(x,y) between this received vector y and each of the
possible codewords x. Put your answers/in a new column in the table above.

ii. Use the answer in the previous part to find X and E
N . 9 A -
(ii) Decoding via the syndrome:

i. Find the parity check matrix H of this code, ¢

T P R
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ii. Find the syndrome vector s. pA4
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iii. Use the answer in the previous parts to find X and E
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Problem 2. Consider the following encoding and decoding for a systematic linear block
code:

e Encoding

— The bit positions that are powers of 2 (1, 2, 4, 8, 16, etc.) are check bits.
— The rest (3, 5, 6, 7, 9, etc.) are filled up with the k data bits.

Twis s a gemeral  —| Each check bit forces the parity of some collection of bits, including itself, to be
statement obeut evern.
systematic

=

lincar block code x To see which check bits the data bit in position i contributes to, rewrite ¢ as

a sum of powers of 2. A bit is checked by just those check bits occurring in
its expansion.

e Decoding

— When a codeword arrives, the receiver initializes a counter to zero. It then ex-

amines each check bit at position i (i = 1, 2, 4, 8, ...) to see if it has the correct
parity.

— If not, the receiver adds i to the counter. If the counter is zero after all the check
bits have been examined (i.e., if they were all correct), the codeword is accepted
as valid. If the counter is nonzero, it contains the position of the incorrect bit.

We will consider the case when the codeword’s length n = 7.

(a) How many bits are check bits?
Hint: How many bit positions are powers of 27

Theve are Nzt bits in eoch codeword.
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(c¢) Find the corresponding parity check matrix H.

W11 o 8 B8 0 v Do ©@ Q@

T2
-@Qai‘°°¢=01égﬁqi
G"g_o?e10 H - o
a8 3 0 09 o ] R

(d) Explain, from the elements inside the matrix H, how this is a Hamming code.
The columns of H cover all the nonzero binary vectors of length 3.

(e) Explain how the decoding instruction above is the “same” as the decoding via the
syndrome described in class.
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Problem 3. Construct a generator matrix G and a corresponding parity check matrix H
for a (15,11) Hamming code.
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Problem 4 (Carlson and Crilly, 2009, P13.2-1). (Optional) In mathematical analysis, a
function d(x,y) is a “true” distance if it satisfies all of the following properties:

(i) positivity: d(x,y) > 0 with equality if and only if x =y
(ii) symmetry: d(x,y) = d(y, x)

(iii) triangle inequality: d(x,z) < d(x,y) + d(y, z)

Is the Hamming distance a “true” distance? (Prove or disprove)

Hint: For the triangle inequality, first consider the number of 1s in u, v, and uép v and
confirm that d(u,v) < w(u) + w(v). Then, from this inequality, replace u by x @y and v
by y @Dz
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Problem 5 (Carlson and Crilly, 2009, P13.2-2 and P13.2-3). (Optional) Consider a block
code. Suppose x is the transmitted codeword and that y is the vector that results when x
is received with ¢ > 0 bit errors. Use the triangle inequality for the Hamming distance to
show that

(a) if the code has dy, > £+ 1 and if @ < ¢, then the errors are detectable.

Recall trat to detect error(s) we s:m,oby check whether the veceived vector y is a valid code word.

The ervorsin 3 are detechable i$4 Y is net a valid Code werd .

Cons:der any code werd = ée Thoat is net ®.

From  Lr1 < Jcos.,S) sdwm, p)ediy, =) Zwe) +diy.e) sLidin e
o ) P\
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we bhowe J( v,e) 21 >0, So, ¥ connoct be the Some as any code word n C.
(onless 2 =&, in vhich cose, tre is no erver to datect.)

Heace, the evrors in . ove detechable.

(b) if the code has dpy, > 2t + 1 and if @ < ¢, then the errors are correctable by the
minimum distance decoder.

Cons:der ony code werd e ¢ that is not .
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