ECS 452: Digital Communication Systems

HW 4 - Due: Not Due

Lecturer: Asst. Prof. Dr. Prapun Suksompong

Problem 1 (HW4-2015-2, Free). In each row of the table below, compare the entropy H(X)of the random variable X in the first column with the entropy H(Y) of the random variable Y in the third column by writing ">", "=", or "<" in the second column. Watch out for approximation and round-off error.

Each entropy value can be calculated directly from the given row vectors, Here, we use MATLAB to do this task.

	[U(Y)] subscept $[0, 2, 0, 7]$		$U(V)$, $v \in [0, 0, 0, 0]$	
0.8813 \approx $H(X)$ when $\underline{\mathbf{p}} = [0.3, 0.7]$.		>	$H(Y)$ when $\mathbf{q} = [0.8, 0.2].$	≈ 0.7219
1.5710 $H(X)$ when $\underline{\mathbf{p}} = [0.3, 0.3, 0.4].$		=	$H(Y)$ when $\underline{\mathbf{q}} = [0.4, 0.3, 0.$	³]. ≈ 1.5710
1.9710≈	$H(X) \text{ when } p(x) = \begin{cases} 0.3, & x \in \{1, 2\} \\ 0.2, & x \in \{3, 4\} \\ 0, & \text{otherwise.} \end{cases}$, >	$H(Y)$ when $\underline{\mathbf{q}} = [0.4, 0.3, 0.$	3]. ≈ 1.5710
<pre>% ENTROPY2 accepts probability mass function % as a row vector, calculate the corresponding % entropy in bits. p=p(find(abs(p)>1e-8)); % Eliminate 1 p=p(find(abs(p)>1e-8)); % Eliminate 0 if length(p)==0 H = 0; else H = -sum(p.*log(p))/log(2); end Problem 2 (HW4-2015-2, Free). Consider random variables X and Y whose joint pmf is</pre>				
given	by The given expression for $p_{X,Y}(x,y) = \begin{cases} c(x+y), \\ 0, \end{cases}$	-	pmf can be expressed using th B} and $y \in \{2, 4\}$, e.	e joint pmf matrix as
Evaluate the following quantities.				1 3c 5c
	1/			3 36 76

- (a) $c = \frac{1}{20}$ all elements in the P matrix (b) $H(X,Y) = H\left(\left[\frac{2}{20}, \frac{1}{4}, \frac{1}{4}, \frac{2}{20}\right]\right) = -\frac{2}{20}\log_2 \frac{3}{20} - \frac{2}{4}\log_2 \frac{4}{4} - \frac{2}{20}\log_2 \frac{2}{20} \approx 1.9406$ bits.
- (d) H(Y) = H([; 글]) ≈ 0.9710
- (e) H(X|Y) = H(X,Y) H(Y) = 0.9697
- (f) $H(Y|X) = H(X,Y) H(X) \approx 0.9697$
- (g) I(X;Y) = H(x) + H(y) H(x,y) = 0.0013

The sum of all elements in the P matrix should be 1:

36 + 56 + 56 + 76 = 1 ⇒ 20C = 1 $\Rightarrow C = \frac{1}{20}$ $5c = \frac{5}{20} = \frac{5}{5}$ $3c = \frac{5}{20} = \frac{12}{5}$ $3c = \frac{12}{20} = \frac{3}{5}$ 3c 50 120 3/5

2015/2

4-1

$$p_{X,Y}(x,y) = \begin{cases} 1/15, & x = 3, y = 1, \\ 2/15, & x = 4, y = 1, \\ 4/15, & x = 3, y = 3, \\ \beta, & x = 4, y = 3, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find the value of the constant β .
- (b) Are X and Y independent?

$$P = \begin{cases} 1 & 3 & P(z) \\ 3 & [1/15 & 1/15] & = 3/15 = 1/3 \\ 1 & [1/15 & 1/15] & = 3/15 = 2/3 \\ 1 & [1/15 & 1/15] & = 3/15 = 2/3 \\ 1 & [1/15 & 1/15] & = 3/15 \\ 1 &$$

$$P = \begin{array}{c} & 1 & 3 \\ & & 1 \\ & & 3 \\ & & 1_{15} & & 1_{15} \\ & & & 2_{15} & & \beta \end{array}$$

The sum of all elements in the P matrix should be 1:

$$\frac{1}{15} + \frac{4}{15} + \frac{2}{15} + 10 = 1$$
$$\implies 10^{-2} = \frac{10^{-2}}{15} = \frac{$$

Recall that two random variables X and Y are independent if and only if p(x,y) = p(x,y) for all pair (x,y)This is equivalent to $P = p^T q r$.

In this problem, $P = p^T q_S$. Therefore, $\times \amalg \Upsilon$.

(c) Evaluate the following quantities.

(i)
$$H(X) = H([\frac{1}{3}, \frac{1}{3}]) \approx 0.9113$$

(ii) $H(Y) = H([\frac{1}{3}, \frac{1}{3}]) \approx 0.7219$
(iii) $H(X,Y) = H(X) + H(Y) \approx 1.6402$
(iv) $H(X|Y) = H(X) \approx 0.9113$
(v) $H(Y|X) = H(Y) \approx 0.7219$
(vi) $I(X;Y) = 0$

These are the results of knowing that X and Y are independent.