ECS 452: Digital Communication Systems
 2015/2

HW 4 - Due: Not Due
Lecturer: Asst. Prof. Dr. Prapun Suksompong

Problem 1 (HW4-2015-2, Free). In each row of the table below, compare the entropy $H(X)$ of the random variable X in the first column with the entropy $H(Y)$ of the random variable Y in the third column by writing " $>$ ", " $=$ ", or " $<$ " in the second column. Watch out for approximation and round-off error.

Each entropy value can be calculated directly from the given row vectors, Here, we use MATLAB to do this task.

$0.8813 \sim$	$H(X)$ when $\underline{\mathbf{p}}=[0.3,0.7]$.	$>$	$H(Y)$ when $\underline{\mathbf{q}}=[0.8,0.2]$.	0.7219
1.5710 ~	$H(X)$ when $\mathbf{p}=[0.3,0.3,0.4]$.	$=$	$H(Y)$ when $\underline{\mathbf{q}}=[0.4,0.3,0.3]$.	≈ 1.5710
1.9710~	$H(X) \text { when } p(x)= \begin{cases}0.3, & x \in\{1,2\} \\ 0.2, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}$	$>$	$H(Y)$ when $\underline{\mathbf{q}}=[0.4,0.3,0.3]$.	≈ 1.5710

Problem 2 (HW4-2015-2, Free). Consider random variables X and Y whose joint pmf is given by The given expression for the joint pmf can be expressed using the joint pmf matrix as $p_{X, Y}(x, y)= \begin{cases}c(x+y), & x \in\{1,3\} \text { and } y \in\{2,4\}, \\ 0, & \text { otherwise } .\end{cases}$
Evaluate the following quantities.
(a) $c=1 / 20$

Lall clements in the P matrix
(b) $H(X, Y)=H\left(\left[\begin{array}{llll}\frac{5}{20} & \frac{1}{4} & \frac{1}{4} & \frac{7}{20}\end{array}\right]\right)=-\frac{3}{20} \log _{2} \frac{3}{20}-\frac{2}{4} \log _{2} \frac{1}{4}-\frac{7}{20} \log _{2} \frac{7}{20} \approx 1.9406$ bits.
(c) $H(X)=H\left(\left[\begin{array}{ll}\frac{2}{5} & \frac{3}{5}\end{array}\right]\right) \times 0.9710$
(d) $H(Y)=H\left(\left[\begin{array}{ll}\frac{2}{5} & \frac{3}{5}\end{array}\right]\right) \approx 0.9710$
(e) $H(X \mid Y)=H(X, y)-H(y) \approx 0.9697$
(f) $H(Y \mid X)=H(X, y)-H(X) \approx 0.9697$
(g) $I(X ; Y)=H(X)+H(y)-H(X, Y) \approx 0.0013$

The sum of all elements in the P matrix should be 1:

Problem 3 (HW4-2015-2, Free). Consider a pair of random variables X and Y whose joint mf is given by The given expression for the joint mf can be expressed using the joint mf matrix as

$$
p_{X, Y}(x, y)=\left\{\begin{array}{ll}
1 / 15, & x=3, y=1, \\
2 / 15, & x=4, y=1, \\
4 / 15, & x=3, y=3, \\
\beta, & x=4, y=3, \\
0, & \text { otherwise. }
\end{array} \quad \boldsymbol{p}={ }^{2}\left[\begin{array}{cc}
1 & 3 \\
1 / 15 & 4 / 15 \\
2 / 15 & \beta
\end{array}\right]\right.
$$

(a) Find the value of the constant β.
(b) Are X and Y independent?

The sum of all elements in the P matrix should be 1:

$$
\begin{aligned}
& \frac{1}{15}+\frac{4}{15}+\frac{2}{15}+\beta=1 \\
& \Rightarrow \beta=1-\frac{7}{15}=\frac{8}{15} .
\end{aligned}
$$

Recall that two random variables X and Y are independent if and only if
$p(x, y)=p(\alpha) q(y)$ for all pair (x, y)
This is equivalent to $P=p^{\top} q$.

In this problem, $P=p^{\top}$ or. Therefore, $X \Perp Y$.
(c) Evaluate the following quantities.
(i) $H(X)=H\left(\left[\begin{array}{ll}1 / 3 & 2 / 3\end{array}\right]\right) \approx 0.9183$
(ii) $H(Y)=H\left(\left[\begin{array}{ll}1 / 5 & 4 / 5\end{array}\right]\right) \approx 0.7219$
(iii) $H(X, Y)=H(X)+H(Y) \approx 1.6402$
(iv) $H(X \mid Y)_{\approx}=H(X) \approx 0.9183$
(y) $H(Y \mid X)=H(Y) \approx 0.7219$
$(v i) L(X ; Y)=0$

These are the results of knowing that X and Y are independent.

