Instructions

1. Separate into groups of no more than three persons.
2. Only one submission is needed for each group.
3. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
4. Do not panic.

Name	ID

1. Consider a random variable X which has five possible values. Their probabilities are $1 / 4,1 / 4,1 / 4,1 / 8,1 / 8$.
a. Find the expected codeword length when Huffman coding is used without extension.

$$
\begin{aligned}
\mathbb{E}[l(x)] & =3 \times 2 \times \frac{1}{4}+2 \times 3 \times \frac{1}{84} \\
& =\frac{6}{4}+\frac{3}{4}=\frac{9}{4}=2.25 \text { bits } / \text { sym bol }
\end{aligned}
$$

b. Find the entropy (per symbol) of this random variable.

$$
\begin{aligned}
H(x) & =\sum_{a} p_{x}(a) \log _{2} p_{x}(a)=-3 \times \frac{1}{4} \log _{2} \frac{1}{4}-2 \times \frac{1}{8} \log _{2} \frac{1}{8} \\
& =3 \times \frac{2}{4}+2 \times \frac{3}{8}=\frac{9}{4}=2.25 \text { bits } / \text { symbol }
\end{aligned}
$$

2. No need to provide any explanation for this question.

Consider a DMC whose samples of input and output are provided below

$\mathrm{x}:$	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1
$\mathrm{y}:$	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1

Estimate the following quantities:
a. $\mathrm{P}[\mathrm{X}=0] \approx 3 / 15=1 / 5=0.2$
e. $\mathrm{P}[\mathrm{Y}=0 \mid \mathrm{X}=0] \approx \frac{2}{3} \approx 0.667$
b. $p(1) \equiv P[x=1] \approx 12 / 15=4 / 5=0.8$
f. $\quad P_{Y \mid X}(1 \mid 0) \equiv P_{1}[Y=1 \mid X=0]$

$$
\approx \frac{1}{3} \approx 0.333
$$

c. $p_{Y}(0) \equiv P[Y=0] \approx 2 / 15 \approx 0.133$
g. $Q(0 \mid 1) \equiv[Y=0 \mid X=1]$ $\approx \frac{0}{15}=0$
d. $q(1) \equiv P[Y=1] \approx 13 / 15 \approx 0.867$
i. Matrix $Q \approx \begin{gathered}\times y \\ 0\end{gathered}\left[\begin{array}{cc}0 & 1 \\ 2 / 3 & 1 / 3 \\ 0 & 1\end{array}\right]$
h. $Q(1 \mid 1)=P[Y=1 \mid X=1]$
$\approx \frac{15}{15}=1$
j. $P[X=0, Y=0] \approx \frac{2}{15} \leftarrow$ Note that this is the same as

$$
\begin{array}{r}
P[Y=0 \mid X=0] P[x=0] \\
\frac{2}{3} \times \frac{1}{5}=\frac{2}{15}
\end{array}
$$

Instructions

1. Separate into groups of no more than three persons.
2. The group cannot be the same as your former group.
3. Only one submission is needed for each group.
4. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID
Prapon	555

5. Do not panic.
6. Consider a DMC whose $\mathcal{X}=\{1,2,3\}, \mathcal{Y}=\{1,2,3,4\}$, and $\mathbf{Q}=\left[\begin{array}{llll}0.2 & 0.6 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.1 & 0.1 \\ 0.3 & 0.3 & 0.3 & 0.1\end{array}\right]$.

Suppose the prior probability vector is $\underline{\mathbf{p}}=\left[\begin{array}{lll}0.2 & 0.1 & 0.7\end{array}\right]$.
a. Find the joint mf matrix \mathbf{P}.

$$
\begin{aligned}
& \text { Multiply each row in the } Q \text { matrix by its corresponding } p(x)
\end{aligned}
$$

b. Find the MAP detector and its error probability.

c. Find the ML detector and its error probability.

For each column of the Q matrix, select the max value.

The corresponding revalue for the selected value in each column

Alternative answer
 elements as in the Q matrix.
$P(C)=0.21+0.07+0.21+0.02=0.51$
$P(\varepsilon)=1-0.51=0.49$

Instructions

1. Separate into groups of no more than three persons.
2. The group cannot be the same as your former groups.
3. Only one submission is needed for each group.
4. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID
Prapun	555

5. Do not panic.
6. Consider two random variables X and Y whose joint mf matrix is given by $\mathbf{P}=\left[\begin{array}{cc}1 / 2 & 1 / 6 \\ 1 / 6 & 1 / 6\end{array}\right]$. Find $I(X ; Y)$.

We use the formula $I(X ; Y)=H(X)+H(Y)-H(X, Y)$.
$H(X, Y)$ can be found directly from the elements in the P matrix:

$$
H(x, y)=-\frac{1}{2} \log _{2} \frac{1}{2}-3 \times \frac{1}{6} \log _{2} \frac{1}{6}=\frac{1}{2}\left(-\log _{2} \frac{1}{2}-\log _{2} \frac{1}{6}\right)=\frac{1}{2} \log _{2} 12 \approx 1.7925
$$

$H(x)$ and $H(y)$ can be found by first finding $p(x)$ and $q(y)$ from the Q matrix:

$$
\begin{aligned}
& P=\left[\begin{array}{ll}
1 / 2 & 1 / 6
\end{array}\right] \rightarrow \frac{2}{3} \quad H(x)=-\frac{2}{3} \log _{2} \frac{2}{3}-\frac{1}{3} \log _{2} \frac{1}{3}=0.9183 \quad \text { So, } I(X ; y) \approx 2 \times 0.9183-1.7925 \\
& =0.0441 \\
& \begin{array}{cc}
1 / 6 & 1 / 6 \\
\downarrow & \downarrow \\
2 / 3 & 1 / 3
\end{array} \\
& H(Y)=0.9183 \\
& \uparrow \\
& q(y) \text { has same probability }
\end{aligned}
$$

First, we, find the P matrix.
Then, we follow the same steps as in question (1),

$$
\begin{array}{ll}
p=\left[\begin{array}{ll}
1 / 18 & 5 / 18 \\
4 / 9 & 2 / 9
\end{array}\right] \rightarrow 6 / 18=1 / 3 & H(X) \approx 0.9183 \\
\downarrow & \downarrow
\end{array} \quad \begin{array}{ll}
\downarrow / 9=2 / 3 & H(Y)=\log _{2} 2=1 \\
9 / 18 & 9 / 18
\end{array} \quad \text { uniform } \quad \begin{array}{ll}
11 & H(X, Y)=-\frac{1}{18} \log _{2} \frac{1}{18}-\frac{5}{18} \log _{2} \frac{5}{18}-\frac{4}{9} \log _{2} \frac{4}{9}-\frac{2}{9} \log _{2} \frac{2}{9} \approx 1.7472 \\
1 / 2 & 1 / 2
\end{array} \quad \begin{array}{ll}
I(X ; Y) \approx H(X)+H(Y)-H(X, Y)=0.9183+1-1.7472=0.1711
\end{array}
$$

3. Consider two random variables X and Y whose $\mathbf{Q}=\left[\begin{array}{cc}1 / 6 & 5 / 6 \\ 1 / 6 & 5 / 6\end{array}\right]$. Find $I(X ; Y)$.

Note that the two rows in Q are identical. This means $Q(y \mid x)$ does not depend on x. In other words, knowing the value of X does not change the (conditional) pms of Y. Therefore, X and Y are independent which implies $I(x ; y)=0$.
see next page for a more direct solution.

Remark: Normally, to calculate $I(x ; y)$ you will need both p and Q. So, there must be something special about Q that allows you to get $I(X ; Y)$ without P.

Direct calculation:
$H(Y \mid x)=H\left(\left[\frac{1}{6} \frac{5}{6}\right]\right)=0.65$ for any α.
So, $H(Y \mid X)=\sum_{\alpha} p(\alpha) H(Y \mid \alpha) \approx 0.65 \underbrace{\sum_{\alpha} p(a)}_{1} \approx 0.65$.
$I(X ; Y)=H(Y)-H(Y \mid X)$. So, we need $H(Y)$ which in tun need $q(y)$

Let's try $p(x)= \begin{cases}1-p, & x=0 \\ p_{1} & x=1 \\ 0, & \text { otherwise }\end{cases}$
Then,

Therefore, $I(X ; Y)=H(Y)-H(Y \mid X)=0$.

