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The subject of digital communications involves the transmission of information in digital
form from a source that generates the information to one or more destinations. This course
extends the knowledge gained from ECS332 (Principles of Communications) and ECS315
(Probability and Random Processes). Basic principles that underlie the analysis and design
of digital communication systems are covered. This semester, the main focus includes
performance analysis (symbol error probability), optimal receivers, and limits (information
theoretic capacity). These topics are challenging but the presented material are carefully
selected to keep the difficulty level appropriate for undergraduate students.
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1 Elements of a Digital Communication System

1.1. Figure 1 illustrates the functional diagram and the basic elements of
a digital communication system.Elements of digital commu. sys.
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Figure 1: Basic elements of a digital communication system

1.2. The source output may be either

• an analog signal, such as an audio or video signal,

or

• a digital signal, such as the output of a computer, that is discrete in
time and has a finite number of output characters.
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1.3. Source Coding: The messages produced by the source are converted
into a sequence of binary digits.

• Want to represent the source output (message) by as few binary digits
as possible.

◦ In other words, we seek an efficient representation of the source
output that results in little or no redundancy.

• The process of efficiently converting the output of either an analog or
digital source into a sequence of binary digits is called source encod-
ing or data compression.

1.4. Channel Coding:

• Introduce, in a controlled manner, some redundancy in the binary in-
formation sequence that can be used at the receiver to overcome the
effects of noise and interference encountered in the transmission of the
signal through the channel.

◦ The added redundancy serves to increase the reliability of the re-
ceived data and improves the fidelity of the received signal.

• See Examples 1.5 and 1.6.

Example 1.5. Trivial channel coding: Repeat each binary digit n times,
where n is some positive integer.

Example 1.6. More sophisticated channel coding: Taking k information
bits at a time and mapping each k-bit sequence into a unique n-bit sequence,
called a codeword.

• The amount of redundancy introduced by encoding the data in this
manner is measured by the ratio n/k. The reciprocal of this ratio,
namely k/n, is called the rate of the code or, simply, the code rate.

1.7. The binary sequence at the output of the channel encoder is passed
to the digital modulator, which serves as the interface to the physical
(analog) communication channel.

• Since nearly all the communication channels encountered in practice
are capable of transmitting electrical signals (waveforms), the primary
purpose of the digital modulator is to map the binary information se-
quence into signal waveforms.
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• The digital modulator may simply map the binary digit 0 into a wave-
form s0(t) and the binary digit 1 into a waveform s1(t). In this manner,
each bit from the channel encoder is transmitted separately.
We call this binary modulation.

• The modulator may transmit b coded information bits at a time by us-
ing M = 2b distinct waveforms si(t), i = 0, 1, . . . ,M − 1, one waveform
for each of the 2b possible b-bit sequences.
We call this M-ary modulation (M > 2).

1.8. The communication channel is the physical medium that is used
to send the signal from the transmitter to the receiver.

• The physical channel may be

◦ a pair of wires that carry the electrical signal, or

◦ an optical fiber that carries the information on a modulated light
beam, or

◦ an underwater ocean channel in which the information is transmit-
ted acoustically, or

◦ free space over which the information-bearing signal is radiated by
use of an antenna.

Other media that can be characterized as communication channels are
data storage media, such as magnetic tape, magnetic disks, and optical
disks.

• Whatever the physical medium used for transmission of the informa-
tion, the essential feature is that the transmitted signal is corrupted in
a random manner by a variety of possible mechanisms, such as addi-
tive thermal noise generated by electronic devices; man-made noise,
e.g., automobile ignition noise; and atmospheric noise, e.g., electrical
lightning discharges during thunderstorms.

• Other channel impairments including noise, attenuation, distortion,
fading, and interference (such as interference from other users of the
channel).
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1.9. At the receiving end of a digital communication system, the digital
demodulator processes the channel-corrupted transmitted waveform and re-
duces the waveforms to a sequence of numbers that represent estimates of
the transmitted data symbols (binary or M -ary).

This sequence of numbers is passed to the channel decoder, which at-
tempts to reconstruct the original information sequence from knowledge of
the code used by the channel encoder and the redundancy contained in the
received data.

• A measure of how well the demodulator and decoder perform is the
frequency with which errors occur in the decoded sequence. More pre-
cisely, the average probability of a bit-error at the output of the decoder
is a measure of the performance of the demodulator-decoder combina-
tion.

• In general, the probability of error is a function of the code characteris-
tics, the types of waveforms used to transmit the information over the
channel, the transmitter power, the characteristics of the channel (i.e.,
the amount of noise, the nature of the interference), and the method
of demodulation and decoding.

1.10. As a final step, when an analog output is desired, the source decoder
accepts the output sequence from the channel decoder and, from knowledge
of the source encoding method used, attempts to reconstruct the original
signal from the source.

• Because of channel decoding errors and possible distortion introduced
by the source encoder, and perhaps, the source decoder, the signal at
the output of the source decoder is an approximation to the original
source output.

• The difference or some function of the difference between the origi-
nal signal and the reconstructed signal is a measure of the distortion
introduced by the digital communication system.
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2 Source Coding

In this section, we look at the “source encoder” part of the system. This
part removes redundancy from the message stream or sequence. We will
focus only on binary source coding.

2.1. The material in this section is based on [C & T Ch 2, 4, and 5].

2.1 General Concepts

Example 2.2. Suppose your message is a paragraph of (written natural)
text in English.

• Approximately 100 possibilities for characters/symbols.

◦ For example, a character-encoding scheme called (ASCII) (Amer-
ican Standard Code for Information Interchange) originally1 had
128 specified characters – the numbers 0–9, the letters a–z and
A–Z, some basic punctuation symbols2, and a blank space.

• Do we need 7 bits per characters?

2.3. A sentence of English–or of any other language–always has more infor-
mation than you need to decipher it. The meaning of a message can remain
unchanged even though parts of it are removed.

Example 2.4.

• “J-st tr- t- r–d th-s s-nt-nc-.” 3

• “Thanks to the redundancy of language, yxx cxn xndxrstxnd whxt x
xm wrxtxng xvxn xf x rxplxcx xll thx vxwxls wxth xn ’x’ (t gts lttl
hrdr f y dn’t vn kn whr th vwls r).” 4

1Being American, it didn’t originally support accented letters, nor any currency symbols other than the
dollar. More advanced Unicode system was established in 1991.

2There are also some control codes that originated with Teletype machines. In fact, among the 128
characters, 33 are non-printing control characters (many now obsolete) that affect how text and space are
processed and 95 printable characters, including the space.

3Charles Seife, Decoding the Universe. Penguin, 2007
4Steven Pinker, The Language Instinct: How the Mind Creates Language. William Morrow, 1994

7



2.5. It is estimated that we may only need about 1 bits per character in
English text.

Definition 2.6. Discrete Memoryless Sources (DMS): Let us be more
specific about the information source.

• The message that the information source produces can be represented
by a vector of characters X1, X2, . . . , Xn.

◦ A perpetual message source would produce a never-ending sequence
of characters X1, X2, . . ..

• These Xk’s are random variables (at least from the perspective of the
decoder; otherwise, these is no need for communication).

• For simplicity, we will assume our source to be discrete and memoryless.

◦ Assuming a discrete source means that the random variables are all
discrete; that is, they have supports which are countable. Recall
that “countable” means “finite” or “countably infinite”.

∗ We will further assume that they all share the same support
and that the support is finite. This support is called the source
alphabet.

◦ Assuming a memoryless source means that there is no dependency
among the characters in the sequence.

∗ More specifically,

pX1,X2,...,Xn
(x1, x2, . . . , xn) = pX1

(x1)× pX2
(x2)× · · · × pXn

(xn).
(1)

∗ This means the current model of the source is far from the
source of normal English text. English text has dependency
among the characters. However, this simple model provide a
good starting point.

∗ We will further assume that all of the random variables share
the same probability mass function (pmf). We denote this
shared pmf by pX(x). In which case, (1) becomes

pX1,X2,...,Xn
(x1, x2, . . . , xn) = pX(x1)×pX(x2)×· · ·×pX(xn). (2)
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· We will also assume that the pmf pX(x) is known. In prac-
tice, there is an extra step of estimating this pX(x).

· To save space, we may see the pmf pX(x) written simply as
p(x), i.e. without the subscript part.

∗ The shared support of X which is usually denoted by SX be-
comes the source alphabet. Note that we also often see the use
of X to denote the support of X.

• In conclusion, our simplified source code can be characterized by a
random variable X. So, we only need to specify its pmf pX(x).

Example 2.7. See slides.

Definition 2.8. An encoder c(·) is a function that maps each of the char-
acter in the (source) alphabet into a corresponding (binary) codeword.

• In particular, the codeword corresponding to a source character x is
denoted by c(x).

• Each codeword is constructed from a code alphabet.

◦ A binary codeword is constructed from a two-symbol alphabet,
wherein the two symbols are usually taken as 0 and 1.

◦ It is possible to consider non-binary codeword. Morse code dis-
cussed in Example 2.13 is one such example.

• Mathematically, we write

Encoder c : SX → {0, 1}∗

where

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .}

is the set of all finite-length binary strings.

• The length of the codeword associated with source character x is de-
noted by `(x).
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◦ In fact, writing this as ` (c(x)) may be clearer because we can see
that the length depends on the choice of the encoder. However, we
shall follow the notation above5.

Example 2.9. c(red) = 00, c(blue) = 11 is a source code for SX =
{red, blue}.

Example 2.10. Suppose the message is a sequence of basic English words
which happen according to the probabilities provided in the table below.

x p(x) Codeword c(x) `(x)

Yes 4%
No 3%
OK 90%

Thank You 3%

Definition 2.11. The expected length of a code c(·) for a source which is
characterized by a random variable X with probability mass function pX(x)
is given by

E [`(X)] =
∑
x∈SX

pX(x)`(x).

Example 2.12. Back to Example 2.10. Consider a new encoder:

x p(x) Codeword c(x) `(x)

Yes 4% 01
No 3% 001
OK 90% 1

Thank You 3% 0001

Observe the following:

• Data compression can be achieved by assigning short descriptions to
the most frequent outcomes of the data source, and necessarily longer
descriptions to the less frequent outcomes.

• When we calculate the expected length, we don’t really use the fact
that the source alphabet is the set {Yes,No,OK,Thank You}. We
would get the same answer if it is replaced by the set {1, 2, 3, 4}, or the

5which is used by the standard textbooks in information theory.
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set {a, b, c, d}. All that matters is that the alphabet size is 4, and the
corresponding probabilities are {0.04, 0.03, 0.9, 0.03}.
Therefore, for brevity, we often find DMS source defined only by its
alphabet size and the list of probabilities.

Example 2.13. The Morse code is a reasonably efficient code for the En-
glish alphabet using an alphabet of four symbols: a dot, a dash, a letter
space, and a word space. [See Slides]

• Short sequences represent frequent letters (e.g., a single dot represents
E) and long sequences represent infrequent letters (e.g., Q is represented
by “dash,dash,dot,dash”).

Example 2.14. Thought experiment: Let’s consider the following code

x p(x) Codeword c(x) `(x)

1 4% 0
2 3% 1
3 90% 0
4 3% 1

This code is bad because we have ambiguity at the decoder. When a
codeword “0” is received, we don’t know whether to decode it as source
symbol “1” or source symbol “3”. If we want to have lossless source coding,
this ambiguity is not allowed.

Definition 2.15. A code is nonsingular if every source symbol in the
source alphabet has different codeword.

As seen from Example 2.14, nonsingularity is an important concept.
However, it turns out that this property is not enough.

Example 2.16. Another thought experiment: Let’s consider the following
code

x p(x) Codeword c(x) `(x)

1 4% 01
2 3% 010
3 90% 0
4 3% 10
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2.17. We usually wish to convey a sequence (string) of source symbols. So,
we will need to consider concatenation of codewords; that is, if our source
string is

X1, X2, X3, . . .

then the corresponding encoded string is

c(X1)c(X2)c(X3) · · · .

In such cases, to ensure decodability, we may

(a) use fixed-length code, or

(b) use variable-length code and

(i) add a special symbol (a “comma” or a “space”) between any two
codewords

or

(ii) use uniquely decodable codes.

Definition 2.18. A code is called uniquely decodable if any encoded
string has only one possible source string producing it.

Example 2.19. The code used in Example 2.16 is not uniquely decodable
because source string “2”, source string “34”, and source string “13” share
the same code string “010”.

2.20. It may not be easy to check unique decodability of a code. Also,
even when a code is uniquely decodable, one may have to look at the entire
string to determine even the first symbol in the corresponding source string.
Therefore, we focus on a subset of uniquely decodable codes called prefix
code.

Definition 2.21. A code is called a prefix code if no codeword is a prefix6

of any other codeword.

• Equivalently, a code is called a prefix code if you can put all the
codewords into a binary tree were all of them are leaves.

6String s1 is a prefix of string s2 if there exist a string s3, possibly empty, such that s2 = s1s3.
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• A more appropriate name would be “prefix-free” code.

Example 2.22. The code used in Example 2.12 is a prefix code.

x Codeword c(x)

1 01
2 001
3 1
4 0001

Example 2.23.

x Codeword c(x)

1 10
2 110
3 0
4 111

2.24. Any prefix code is uniquely decodable.

• The end of a codeword is immediately recognizable.

• Each source symbol can be decoded as soon as we come to the end of
the codeword corresponding to it. In particular, we need not wait to
see the codewords that come later.

• It is also commonly called an instantaneous code

Example 2.25. The code used in Example 2.12 (and Example 2.22) is a
prefix code and hence it is uniquely decodable.

2.26. The nesting relationship among all the types of source codes is shown
in Figure 2.

Example 2.27.

x Codeword c(x)

1 001
2 01
3 1
4 0001
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Example 2.28. [2, p 106–107]

x Codeword c(x)

1 10
2 00
3 11
4 110

This code is not a prefix code because codeword “11” is a prefix of code-
word “110”.

This code is uniquely decodable. To see that it is uniquely decodable,
take any code string and start from the beginning.

• If the first two bits are 00 or 10, they can be decoded immediately.

• If the first two bits are 11, we must look at the following bit(s).

◦ If the next bit is a 1, the first source symbol is a 3.

◦ If the length of the string of 0’s immediately following the 11 is
even, the first source symbol is a 3.

◦ If the length of the string of 0’s immediately following the 11 is
odd, the first codeword must be 110 and the first source symbol
must be 4.

By repeating this argument, we can see that this code is uniquely decodable.
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2.29. For our present purposes, a better code is one that is uniquely de-

codable and has a shorter expected length than other uniquely decodable
codes. We do not consider other issues of encoding/decoding complexity or
of the relative advantages of block codes or variable length codes. [3, p 57]

2.2 Optimal Source Coding: Huffman Coding

In this section we describe a very popular source coding algorithm called
the Huffman coding.

Definition 2.30. Given a source with known probabilities of occurrence
for symbols in its alphabet, to construct a binary Huffman code, create a
binary tree by repeatedly combining7 the probabilities of the two least likely
symbols.

• Developed by David Huffman as part of a class assignment8.
7The Huffman algorithm performs repeated source reduction [3, p 63]:

• At each step, two source symbols are combined into a new symbol, having a probability that is the
sum of the probabilities of the two symbols being replaced, and the new reduced source now has
one fewer symbol.

• At each step, the two symbols to combine into a new symbol have the two lowest probabilities.

◦ If there are more than two such symbols, select any two.

8The class was the first ever in the area of information theory and was taught by Robert Fano at MIT
in 1951.

◦ Huffman wrote a term paper in lieu of taking a final examination.

◦ It should be noted that in the late 1940s, Fano himself (and independently, also Claude Shannon)
had developed a similar, but suboptimal, algorithm known today as the ShannonFano method. The
difference between the two algorithms is that the ShannonFano code tree is built from the top down,
while the Huffman code tree is constructed from the bottom up.
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• By construction, Huffman code is a prefix code.

Example 2.31.

x pX(x) Codeword c(x) `(x)

1 0.5
2 0.25
3 0.125
4 0.125

E [`(X)] =

Note that for this particular example, the values of 2`(x) from the Huffman
encoding is inversely proportional to pX(x):

pX(x) =
1

2`(x)
.

In other words,

`(x) = log2

1

pX(x)
= − log2(pX(x)).

Therefore,

E [`(X)] =
∑
x

pX(x)`(x) =

Example 2.32.

x pX(x) Codeword c(x) `(x)

‘a’ 0.4
‘b’ 0.3
‘c’ 0.1
‘d’ 0.1
‘e’ 0.06
‘f’ 0.04

E [`(X)] =

16



Example 2.33.

x pX(x) Codeword c(x) `(x)

1 0.25
2 0.25
3 0.2
4 0.15
5 0.15

E [`(X)] =

Example 2.34.

x pX(x) Codeword c(x) `(x)

1/3
1/3
1/4
1/12

E [`(X)] =

x pX(x) Codeword c(x) `(x)

1/3
1/3
1/4
1/12

E [`(X)] =

2.35. The set of codeword lengths for Huffman encoding is not unique.
There may be more than one set of lengths but all of them will give the
same value of expected length.

Definition 2.36. A code is optimal for a given source (with known pmf) if
it is uniquely decodable and its corresponding expected length is the shortest
among all possible uniquely decodable codes for that source.

2.37. The Huffman code is optimal.
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2.3 Source Extension (Extension Coding)

2.38. One can usually (not always) do better in terms of expected length
(per source symbol) by encoding blocks of several source symbols.

Definition 2.39. In, an n-th extension coding, n successive source sym-
bols are grouped into blocks and the encoder operates on the blocks rather
than on individual symbols. [1, p. 777]

Example 2.40.

x pX(x) Codeword c(x) `(x)

Y(es) 0.9
N(o) 0.1

(a) First-order extension:

E [`(X)] =

YNNYYYNYYNNN...

(b) Second-order Extension:

x1x2 pX1,X2
(x1, x2) c(x1, x2) `(x1, x2)

YY
YN
NY
NN

E [`(X1, X2)] =

(c) Third-order Extension:

x1x2x3 pX1,X2,X3
(x1, x2, x3) c(x1, x2, x3) `(x1, x2, x3)

YYY
YYN
YNY

...

E [`(X1, X2, X3)] =

18
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2.4 (Shannon) Entropy for Discrete Random Variables

Entropy is a measure of uncertainty of a random variable [2, p 13].

It arises as the answer to a number of natural questions. One such
question that will be important for us is “What is the average length of the
shortest description of the random variable?”

Definition 2.41. The entropy H(X) of a discrete random variable X is
defined by

H (X) = −
∑
x∈SX

pX (x) log2 pX (x) = −E [log2 pX (X)] .

• The log is to the base 2 and entropy is expressed in bits (per symbol).

◦ The base of the logarithm used in defining H can be chosen to be
any convenient real number b > 1 but if b 6= 2 the unit will not be
in bits.

◦ If the base of the logarithm is e, the entropy is measured in nats.

◦ Unless otherwise specified, base 2 is our default base.

• Based on continuity arguments, we shall assume that 0 ln 0 = 0.

19



Example 2.42. The entropy of the random variable X in Example 2.31 is
1.75 bits (per symbol).

Example 2.43. The entropy of a fair coin toss is 1 bit (per toss).

2.44. Note that entropy is a functional of the (unordered) probabilities
from the pmf of X. It does not depend on the actual values taken by
the random variable X, Therefore, sometimes, we write H(pX) instead of
H(X) to emphasize this fact. Moreover, because we use only the probability
values, we can use the row vector representation p of the pmf pX and simply
express the entropy as H(p).

In MATLAB, to calculate H(X), we may define a row vector pX from
the pmf pX . Then, the value of the entropy is given by

HX = -pX*(log2(pX))’.

Example 2.45. The entropy of a uniform (discrete) random variable X on
{1, 2, 3, . . . , n}:

Example 2.46. The entropy of a Bernoulli random variable X:

20



Definition 2.47. Binary Entropy Function : We define hb(p), h (p) or
H(p) to be −p log p− (1− p) log (1− p), whose plot is shown in Figure 3.
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Entropy for two random variables 

• For two random variables X and Y with a joint pmf ( ),p x y  and marginal pmf  p(x) and p(y). 

Figure 3: Binary Entropy Function

2.48. Two important facts about entropy:

(a) H (X) ≤ log2 |SX | with equality if and only if X is a uniform random
variable.

(b) H (X) ≥ 0 with equality if and only if X is not random.

In summary,

0
deterministic

≤ H (X) ≤ log2 |SX |
uniform

.

Theorem 2.49. The expected length E [`(X)] of any uniquely decodable
binary code for a random variable X is greater than or equal to the entropy
H(X); that is,

E [`(X)] ≥ H(X)

with equality if and only if 2−`(x) = pX(x). [2, Thm. 5.3.1]

Definition 2.50. Let L(c,X) be the expected codeword length when ran-
dom variable X is encoded by code c.

Let L∗(X) be the minimum possible expected codeword length when
random variable X is encoded by a uniquely decodable code c:

L∗(X) = min
UD c

L(c,X).

21



2.51. Given a random variable X, let cHuffman be the Huffman code for this
X. Then, from the optimality of Huffman code mentioned in 2.37,

L∗(X) = L(cHuffman, X).

Theorem 2.52. The optimal code for a random variable X has an expected
length less than H(X) + 1:

L∗(X) < H(X) + 1.

2.53. Combining Theorem 2.49 and Theorem 2.52, we have

H(X) ≤ L∗(X) < H(X) + 1. (3)

Definition 2.54. Let L∗n(X) be the minimum expected codeword length
per symbol when the random variable X is encoded with n-th extension
uniquely decodable coding. Of course, this can be achieve by using n-th
extension Huffman coding.

2.55. An extension of (3):

H(X) ≤ L∗n(X) < H(X) +
1

n
. (4)

In particular,
lim
n→∞

L∗n(X) = H(X).

In otherwords, by using large block length, we can achieve an expected
length per source symbol that is arbitrarily close to the value of the entropy.

2.56. Operational meaning of entropy: Entropy of a random variable is the
average length of its shortest description.

2.57. References

• Section 16.1 in Carlson and Crilly [1]

• Chapters 2 and 5 in Cover and Thomas [2]

• Chapter 4 in Fine [3]

• Chapter 14 in Johnson, Sethares, and Klein [5]

• Section 11.2 in Ziemer and Tranter [9]
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3 An Introduction to Digital Communication Systems

Over Discrete Memoryless Channel (DMC)

In this section, we keep our analysis of the communication system simple
by considering purely digital systems. To do this, we assume all non-source-
coding parts of the system, including the physical channel, can be combined
into an “equivalent channel” which we shall simply refer to in this section
as the “channel”.

3.1 Discrete Memoryless Channel (DMC) Models

Example 3.1. The binary symmetric channel (BSC), which is the
simplest model of a channel with errors, is shown in Figure 4.

1

0

1

0

1

p

1-p

p

1-p

X Y

Figure 4: Binary symmetric channel and its channel diagram

• “Binary” means that the there are two possible values for the input and
also two possible values for the output. We normally use the symbols
0 and 1 to represent these two values.

• Passing through this channel, the input symbols are complemented
with probability p.
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• It is simple, yet it captures most of the complexity of the general prob-
lem.

Definition 3.2. Our model for discrete memoryless channel (DMC) is shown
in Figure 5.

1

 Q y xX Y

Figure 5: Discrete memoryless channel

• The channel input is denoted by a random variable X.

◦ The pmf pX(x) is usually denoted by simply p(x) and usually ex-
pressed in the form of a row vector p or π.

◦ The support SX is often denoted by X .

• Similarly, the channel output is denoted by a random variable Y .

◦ The pmf pY (y) is usually denoted by simply q(y) and usually ex-
pressed in the form of a row vector q.

◦ The support SY is often denoted by Y .

• The channel corrupts its input X in such a way that when the input
is X = x, its output Y is randomly selected from the conditional pmf
pY |X(y|x).

◦ This conditional pmf pY |X(y|x) is usually denoted by Q(y|x) and
usually expressed in the form of a probability transition matrix Q:

y

x

 . . . ... . . .

· · · P [Y = y|X = x] · · ·
. . . ... . . .
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◦ The channel is called memoryless9 because its channel output at a
given time is a function of the channel input at that time and is
not a function of previous channel inputs.

◦ Here, the transition probabilities are assumed constant. However,
in many commonly encountered situations, the transition probabil-
ities are time varying. An example is the wireless mobile channel
in which the transmitter-receiver distance is changing with time.

Example 3.3. For a binary symmetric channel (BSC) defined in 3.1,

Example 3.4. Suppose, for a DMC, we have X = {x1, x2} and Y =
{y1, y2, y3}. Then, its probability transition matrix Q is of the form

Q =

[
Q (y1|x1) Q (y2|x1) Q (y2|x1)
Q (y1|x2) Q (y2|x2) Q (y2|x2)

]
.

You may wonder how this Q happens in real life. Let’s suppose that the
input to the channel is binary; hence, X = {0, 1} as in the BSC. However, in
this case, after passing through the channel, some bits can be lost10 (rather
than corrupted). In such case, we have three possible outputs of the channel:
0, 1, e where the “e” represents the case in which the bit is erased by the
channel.

9Mathematically, the condition that the channel is memoryless may be expressed as [6, Eq. 6.5-1 p.
355]

pXn
1 |Y n

1
(xn

1 | yn1 ) =

n∏
k=1

Q (yk |xk ).

10The receiver knows which bits have been erased.
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3.5. Knowing the input probabilities p and the channel probability transi-
tion matrix Q, we can calculate the output probabilities q from

q = pQ.

To see this, recall the total probability theorem: If a (finite or in-
finitely) countable collection of events {B1, B2, . . .} is a partition of Ω, then

P (A) =
∑
i

P (A ∩Bi) =
∑
i

P (A|Bi)P (Bi). (5)

For us, event A is the event [Y = y]. Applying this theorem to our
variables, we get

q(y) = P [Y = y] =
∑
x

P [X = x, Y = y]

=
∑
x

P [Y = y|X = x]P [X = x] =
∑
x

Q(y|x)p(x).

This is exactly the same as the matrix multiplication calculation performed
to find each element of q.

Example 3.6. For a binary symmetric channel (BSC) defined in 3.1,
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3.7. Recall, from ECS315, that there is another matrix called the joint
probability matrix P. This is the matrix whose elements give the joint
probabilities PX,Y (x, y) = P [X = x, Y = y]:

y

x

 . . . ... . . .

· · · P [X = x, Y = y] · · ·
. . . ... . . .

 .
Recall also that we can get p(x) by adding the elements of P in the row
corresponding to x. Similarly, we can get q(y) by adding the elements of P
in the column corresponding to y.

By definition, the relationship between the conditional probability Q(y|x)
and the joint probability PX,Y (x, y) is

Q(y|x) =
PX,Y (x, y)

p(x)
.

Equivalently,
PX,Y (x, y) = p(x)Q(y|x).

Therefore, to get the matrix P from matrix Q, we need to multiply each
row of Q by the corresponding p(x). This could be done easily in MATLAB
by first constructing a diagonal matrix from the elements in p and then
multiply this to the matrix Q:

P =
(
diag

(
p
))

Q.

Example 3.8. Binary Assymmetric Channel (BAC): Consider a bi-
nary input-output channel whose matrix of transition probabilities is

Q =

[
0.7 0.3
0.4 0.6

]
.

(a) Draw the channel diagram.

(b) If the two inputs are equally likely, find the corresponding output prob-
abilities and the joint probability matrix P for this channel.

[9, Ex. 11.3]
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3.2 Decoder and Symbol Error Probability

3.9. Knowing the characteristics of the channel and its input, on the re-
ceiver side, we can use this information to build a “good” receiver.

We now consider a part of the receiver called the (channel) decoder.
Its job is to guess the value of the channel input11 X from the value of the
received channel output Y . We denote this guessed value by X̂. A “good”
receiver is the one that (often) guesses correctly.

Quantitatively, to measure the performance of a decoder, we define a
quantity called the (symbol) error probability.

Definition 3.10. The (symbol) error probability, denoted by P (E), can
be calculated from

P (E) = P
[
X̂ 6= X

]
.

3.11. A “good” detector should guess based on all the information it has.
Here, the only information it receives is the value of Y . So, a detector is a
function of Y , say, g(Y ). Therefore, X̂ = g(Y ). Sometimes, we also write
X̂ as X̂(Y ) to emphasize that the decoded value X̂ depends on the received
value Y .

Definition 3.12. A “naive” decoder is a decoder that simply sets X̂ = Y .

Example 3.13. Consider the BAC channel and input probabilities specified
in Example 3.8. Find P (E) when X̂ = Y .

11To simplify the analysis, we still haven’t considered the channel encoder. (It may be there but is
included in the equivalent channel or it may not be in the system at all.)
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3.14. For general DMC, the error probability of the naive decoder is

Example 3.15. With the derived formula, let’s revisit Example 3.8 and
Example 3.13

Example 3.16. Find the error probability P (E) when a naive decoder
is used with a DMC channel in which X = {0, 1}, Y = {1, 2, 3}, Q =[

0.5 0.2 0.3
0.3 0.4 0.3

]
and p = [0.2, 0.8].

3.3 Optimal Decoding for BSC

To introduce the idea of optimal decoding, let’s revisit the binary symmetric
channel in Example 3.1. Here, we will attempt to find the “best” decoder.
Of course, by “best”, we mean “having minimum value of error probability”.

3.17. It is interesting to first consider the question of how many reasonable
decoders we can use.
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So, only four reasonable detectors.

Example 3.18. Suppose p = 0. Which detector should we use?

Example 3.19. Suppose p = 1. Which detector should we use?

Example 3.20. Suppose p0 = 0. Which detector should we use?

Example 3.21. Suppose p0 = 1. Which detector should we use?

Example 3.22. Suppose p = 0.1 and p0 = 0.8. Which detector should we
use?

3.23. To formally compare the performance of the four detectors, we now
derive the formula for the error probability of the four detectors. First, we
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apply the total probability theorem by using the events [X = x] to partition
the sample space.

P (C) =
∑
x

P (C |[X = x])P [X = x]

Of course, event C is the event [X̂ = X]. Therefore,

P (C) =
∑
x

P
[
X̂ = X |X = x

]
P [X = x] =

∑
x

P
[
X̂ = x |X = x

]
P [X = x].

For binary channel, there are only two possible value of x: 0 or 1. So,

P (C) =
∑

x∈{0,1}

P
[
X̂ = x |X = x

]
P [X = x]

= P
[
X̂ = 0 |X = 0

]
P [X = 0] + P

[
X̂ = 1 |X = 1

]
P [X = 1]

= P
[
X̂ = 0 |X = 0

]
p0 + P

[
X̂ = 1 |X = 1

]
(1− p0)

X̂ P
[
X̂ = 0 |X = 0

]
P
[
X̂ = 1 |X = 1

]
P (C) P (E)

Y 1− p 1− p 1− p p

1− Y p p p 1− p
1 0 1 1− p0 p0

0 1 0 p0 1− p0

3.4 Optimal Decoding for DMC

Example 3.24. Let’s return to Example 3.16 and find the error probability
P (E) when a specific decoder is used. In that example, we have X = {0, 1},

Y = {1, 2, 3}, Q =

[
0.5 0.2 0.3
0.3 0.4 0.3

]
and p = [0.2, 0.8]. The decoder table

below specifies the decoder under consideration:

Y X̂

1 0
2 1
3 0
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Using MATLAB, we can find the error probability for all possible rea-
sonable detectors in this example.

3.25. For general DMC, it would be tedious to list all possible detectors.
In fact, there are |X ||Y| reasonable detectors.

It is even more time-consuming to try to calculate the error probability
for all of them. Therefore, in this section, we will derive the formula of the
“optimal” detector.

3.26. We first note that to minimize P (E), we need to maximize P (C).
Here, we apply the total probability theorem by using the events [Y = y] to
partition the sample space:

P (C) =
∑
y

P (C |[Y = y])P [Y = y].

Event C is the event [X̂ = X]. Therefore,

P (C) =
∑
y

P
[
X̂ = X |Y = y

]
P [Y = y].

Now, recall that our detector X̂ is a function12 of Y ; that is X̂ = g(Y ) for
some function g. So,

P (C) =
∑
y

P [g (Y ) = X |Y = y ]P [Y = y]

=
∑
y

P [X = g (y) |Y = y ]P [Y = y]

In this form, we see13 that for each Y = y, we should maximize P [X = g (y) |Y = y ].
Therefore, for each y, the decoder g(y) should output the value of x which
maximizes P [X = x|Y = y]:

goptimal (y) = arg max
x

P [X = x |Y = y ] .

12This change of notation allows one to see the dependence of X̂ on Y .
13We also see that any decoder that produces random results (on the support of X) can not be better

than our optimal detector. Outputting the value of x which does not maximize the a posteriori probability
reduces the contribution in the sum that gives P (C).
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In other words,

x̂optimal (y) = arg max
x

P [X = x |Y = y ]

and
X̂optimal = arg max

x
P [X = x |Y ] .

Definition 3.27. The optimal detector is the detector that maximizes the
a posteriori probability P [X = x |Y = y ]. This detector is called the max-
imum a posteriori probability (MAP) detector:

x̂MAP (y) = x̂optimal (y) = arg max
x

P [X = x |Y = y ] .

• After the fact, it is quite intuitive that this should be the best detector.

Recall that the decoder don’t have a direct access to the X value.

◦ Without knowing the value of Y , to minimize the error probability,
it should guess the most likely value of X which is the value of x
that maximize P [X = x].

◦ Knowing Y = y, the decoder can update its probability about x
from P [X = x] to P [X = x|Y = y]. Therefore, the detector should
guess the value of the most likely x value conditioned on the fact
that Y = y.

3.28. We can “simplify” the formula for the MAP detector even further.

Fist, recall “Form 1” of the Bayes’ theorem:

P (B|A) = P (A|B)
P (B)

P (A)
.

Here, we have B = [X = x] and A = [Y = y].

33



Therefore,
x̂MAP (y) = arg max

x
Q (y |x) p (x) . (6)

3.29. A recipe to find the MAP detector and its corresponding error prob-
ability:

(a) Find the P matrix by scaling elements in each row of the Q matrix by
their corresponding prior probability p(x).

(b) Select (by circling) the maximum value in each column (for each value
of y) in the P matrix.

• If there are multiple max values in a column, select only one.

(i) The corresponding x value is the value of x̂ for that y.

(ii) The sum of the selected values from the P matrix is P (C).

(c) P (E) = 1− P (C).
Example 3.30. Find the MAP detector and its corresponding error prob-
ability for the DMC channel in Example 3.24 (and Example 3.16) when the
prior probability vector is p = [0.2, 0.8].

Example 3.31. Repeat Example 3.30 but with p = [0.6, 0.4].
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3.32. MAP detector for BSC: For BSC,

x̂MAP (y) = arg max
x∈{0,1}

Q (y |x) p (x) .

Therefore,

x̂MAP (0) =

{
1, when Q (0 |1) p (1) > Q (0 |0) p (0) ,
0, when Q (0 |1) p (1) < Q (0 |0) p (0) ,

and

x̂MAP (1) =

{
1, when Q (1 |1) p (1) > Q (1 |0) p (0) ,
0, when Q (1 |1) p (1) < Q (1 |0) p (0) .

Definition 3.33. In many scenarios, the MAP detector is too complicated
or the prior probabilities are unknown. In such cases, we may consider using
a detector that ignores the prior probability term in (6). This detector is
called the maximum likelihood (ML) detector:

x̂ML (y) = arg max
x

Q (y |x) . (7)

Observe that

• ML detector is generally sub-optimal

• ML detector is the same as the MAP detector when X is a uniform
random variable.

◦ In other words, when the prior probabilities p(x) are uniform, the
ML detector is optimal.
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Example 3.34. Find the ML detector and the corresponding error proba-
bility for the system in Example 3.22 in which we have BSC with p = 0.1
and p0 = 0.8.

Note that

• the prior probabilities p0 (and p1) is not used

• the ML detector and the MAP detector are the same in this example

◦ ML detector can be optimal even when the prior probabilities are
not uniform.

Recall that for BSC with x̂(y) = y, the error probability P (E) = p. So,
in this example, because x̂ML(y) = y, we have P (E) = p = 0.1.

3.35. In general, for BSC, it’s straightforward to show that

(a) when p < 0.5, we have x̂ML(y) = y with corresponding P (E) = p.

(b) when p > 0.5, we have x̂ML(y) = 1−y with corresponding P (E) = 1−p.

(c) when p = 0.5, all four reasonable detectors have the same P (E) = 1/2.

• In fact, when p = 0.5, the channel completely destroys any con-
nection between X and Y . In particular, in this scenario, X |= Y .
So, the value of the observed y is useless.
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3.36. A recipe to find the ML detector and its corresponding error proba-
bility:

(a) Select (by circling) the maximum value in each column (for each value
of y) in the Q matrix.

• If there are multiple max values in a column, select only one.

• The corresponding x value is the value of x̂ for that y.

(b) Find the P matrix by scaling elements in each row of the Q matrix by
their corresponding prior probability p(x).

(c) In the P matrix, select the elements corresponding to the selected po-
sitions in the Q matrix.

(d) The sum of the selected values from the P matrix is P (C).

(e) P (E) = 1− P (C).

Example 3.37. Solve Example 3.34 using the recipe in 3.36.

Example 3.38. Find the ML detector and its corresponding error proba-
bility for the DMC channel in Example 3.24 (, Example 3.16, and Exam-

ple 3.30) in which X = {0, 1}, Y = {1, 2, 3}, Q =

[
0.5 0.2 0.3
0.3 0.4 0.3

]
and

p = [0.2, 0.8].
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4 An Introduction to Channel Coding and Decoding

over BSC

4.1. Recall that channel coding introduces, in a controlled manner, some
redundancy in the (binary) information sequence that can be used at the
receiver to overcome the effects of noise and interference encountered in the
transmission of the signal through the channel.

Example 4.2. Repetition Code: Repeat each bit n times, where n is
some positive integer.

• Use the channel n times to transmit 1 info-bit

• The (transmission) rate is 1
n [bpcu].

◦ bpcu = bits per channel use

4.3. Two classes of channel codes

(a) Block codes

• To be discussed here.

• Realized by combinational/combinatorial circuit.

(b) Convolutional codes

• Encoder has memory.

• Realized by sequential circuit. (Recall state diagram, flip-flop, etc.)
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Definition 4.4. Block Encoding: Take k (information) bits at a time and
map each k-bit sequence into a (unique) n-bit sequence, called a codeword.

• The code is called (n, k) code.

• Working with k-info-bit blocks means there are potentially M = 2k

different information blocks.

◦ The table that lists all the 2k mapping from the k-bit info-block s
to the n-bit codeword x is called the codebook.

◦ The M info-blocks are denoted by s(1), s(2), . . . , s(M).
The corresponding M codewords are denoted by x(1),x(2), . . . ,x(M),
respectively.

• To have unique codeword for each information block, we need n ≥ k.
Of course, with some redundancy added to combat the error introduced
by the channel, we need n > k.

◦ The amount of redundancy is measured by the ratio n
k .

◦ The number of redundant bits is r = n− k.

• Here, we use the channel n times to convey k (information) bits.

◦ The ratio k
n is called the rate of the code or, simply, the code rate.

◦ The (transmission) rate is R = k
n = log2 M

n [bpcu].

4.5. When the mapping from the information block s to the codeword x is
invertible, the task of the decoder can be separated into two steps:

• First, find x̂ which is its guess of the x value based on the observed
value of y.

• Second, map x̂ back to the corresponding ŝ based on the codebook.

You may notice that it is more important to recover the index of the code-
word than the codeword itself. Only its index is enough to indicate which
info-block produced it.
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4.6. General idea for ML decoding of block codes over BSC: minimum-
distance decoder

• To recover the value of x from the observed value of y, we can apply
what we studied about optimal detector in the previous section.

◦ The optimal detector is again given by the MAP detector:

x̂MAP

(
y
)

= arg max
x

Q
(
y |x

)
p (x). (8)

◦ When the prior probabilities p (x) is unknown or when we want
simpler decoder, we may consider using the ML decoder:

x̂ML

(
y
)

= arg max
x

Q
(
y |x

)
. (9)

In this section, we will mainly focus on the ML decoder.

• By the memoryless property of the channel,

Q
(
y|x
)

= Q(y1|x1)×Q(y2|x2)× · · · ×Q(yn|xn).

Furthermore, for BSC,

Q(yi|xi) =

{
p, yi 6= xi,
1− p, yi = xi.

Therefore,

Q
(
y|x
)

= pd(x,y)(1− p)n−d(x,y) =

(
p

1− p

)d(x,y)
(1− p)n, (10)

where d
(
x,y

)
is the number of coordinates in which the two blocks x

and y differ.

Note that when p < 0.5, which is usually the case for practical systems,
we have p < 1− p and hence 0 < p

1−p < 1. In which case, to maximize

Q
(
y|x
)
, we need to minimize d

(
x,y

)
. In other words, x̂ML

(
y
)

should
be the codeword x which has the minimum distance from the observed
y:

x̂ML

(
y
)

= arg min
x
d
(
x,y

)
. (11)

In conclusion, for block coding over BSC with p < 0.5, the ML decoder
is the same as the minimum distance decoder.
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Example 4.7. Repetition Code and Majority Voting: Back to Example
4.2.

Let 0 and 1 denote the n-dimensional row vectors 00 . . . 0 and 11 . . . 1,
respectively. Observe that

d
(
x,y

)
=

{
#1 in y, when x = 0,

#0 in y, when x = 1.

Therefore, the minimum distance detector is

x̂ML

(
y
)

=

{
0, when #1 in y < #0 in y,

1, when #1 in y > #0 in y.

Equivalently,

ŝML

(
y
)

=

{
0, when #1 in y < #0 in y,

1, when #1 in y > #0 in y.

This is the same as taking a majority vote among the received bit in the
y vector.

The corresponding error probability is

P (E) =
n∑

c=dn2e

(
n

c

)
pc(1− p)n−c.

For example, when p = 0.01, we have P (E) ≈ 10−5. Figure 6 compares the
error probability when different values of n are used.
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Error Control Coding

1

 Repetition Code at Tx: Repeat the bit n times.

 Channel: Binary Symmetric Channel (BSC) with bit error 
probability p.

 Majority Vote at Rx

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3
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0.4

0.45

0.5

n = 15

n = 5

n = 1

n = 25

p

 P

Figure 6: Error probability for a system that uses repetition code at the transmitter (repeat
each info-bit n times) and majority voting at the receiver. The channel is assumed to be
binary symmetric with crossover probability p.

• Notice that the error probability decreases to 0 when n is increased.
It is then possible to transmit with arbitrarily low probability of error
using this scheme.

• However, the (transmission) rate R = k
n = 1

n is also reduced as n is
increased.

So, in the limit, although we can have very small error probability, we suffer
tiny (transmission) rate.

We may then ask “what is the maximum (transmission) rate of infor-
mation that can be reliably transmitted over a communications channel?”
Here, reliable communication means that the error probability can be made
arbitrarily small. Shannon provided the solution to this question in his
seminal work. We will revisit this question in the next section.

4.8. General idea for MAP decoding of block codes over BSC: Of course,
when the prior probabilities are known, the optimal decoder is given by the
MAP decoder:

x̂MAP

(
y
)

= arg max
x

Q
(
y |x

)
p (x). (12)

By definition, p (x) ≡ P [X = x]. Therefore,

p
(
x(i)
)
≡ P

[
X = x(i)

]
= P

[
S = s(i)

]
.

42



Again, because the BSC is memoryless, from (10), we have

Q
(
y|x
)

= pd(x,y)(1− p)n−d(x,y) =

(
p

1− p

)d(x,y)
(1− p)n, (13)

Therefore,

x̂MAP

(
y
)

= arg max
x

(
p

1− p

)d(x,y)
(1− p)np (x) (14)

= arg max
x

(
p

1− p

)d(x,y)
p (x) . (15)

Example 4.9. Consider a communication over a BSC with p = 1
3 . Suppose

repetition code is used with n = 3. Assume that the info-bit has P [S = 0] =
3
4 . Find the ML and MAP decoders and their error probabilities.

n1 n0 n1 − n0

(
p

1−p

)n1−n0

×p0
p1

ŝMAP

(
y
)

ŝML

(
y
)

0

1

2

3
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5 Mutual Information and Channel Capacity

In Section 2, we have seen the use of a quantity called entropy to measure
the amount of randomness in a random variable. In this section, we in-
troduce several more information-theoretic quantities. These quantities are
important in the study of Shannon’s results.

5.1 Information-Theoretic Quantities

Definition 5.1. Recall that, the entropy of a discrete random variable X
is defined in Definition 2.41 to be

H (X) = −
∑
x∈SX

pX (x) log2 pX (x) = −E [log2 pX (X)] . (16)

Similarly, the entropy of a discrete random variable Y is given by

H (Y ) = −
∑
y∈SY

pY (y) log2 pY (y) = −E [log2 pY (Y )] . (17)

In our context, the X and Y are input and output of a discrete memory-
less channel, respectively. In such situation, we have introduced some new
notations in Section 3.1:

Under such notations, (16) and (17) become

H (X) = −
∑
x∈X

p (x) log2 p (x) = −E [log2 p (X)] (18)

and
H (Y ) = −

∑
y∈Y

q (y) log2 q (y) = −E [log2 q (Y )] . (19)

Definition 5.2. The joint entropy for two random variables X and Y is
given by

H (X, Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log2p (x, y) = −E [log2 p (X, Y )] .
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Example 5.3. Random variables X and Y have the following joint pmf
matrix P: 

1
8

1
16

1
16

1
4

1
16

1
8

1
16 0

1
32

1
32

1
16 0

1
32

1
32

1
16 0



Find H(X), H(Y ) and H(X, Y ).

Definition 5.4. Conditional entropy:

(a) The (conditional) entropy of Y when we know X = x is denoted by
H (Y |X = x) or simply H(Y |x). It can be calculated from

H (Y |x) = −
∑
y∈Y

Q (y |x) log2Q (y |x) = −E [ log2(Q(Y |x))|X = x] .

• Note that the above formula is what we should expect it to be.
When we want to find the entropy of Y , we use (19):

H (Y ) = −
∑
y∈Y

q (y) log2 q (y).

When we have an extra piece of information that X = x, we should
update the probability about Y from the unconditional probability
q(y) to the conditional probability Q(y|x).
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• Note that when we consider Q(y|x) with the value of x fixed and
the value of y varied, we simply get the whole x-row from Q matrix.
So, to find H (Y |x), we simply find the “usual” entropy from the
probability values in the row corresponding to x in the Q matrix.

(b) The (average) conditional entropy of Y when we know X is denoted by
H(Y |X). It can be calculated from

H (Y |X ) =
∑
x∈X

p (x)H (Y |x)

= −
∑
x∈X

p (x)
∑
y∈Y

Q (y |x) log2Q (y |x)

= −
∑
x∈X

∑
y∈Y

p (x, y) log2Q (y |x)

= −E [log2Q (Y |X )]

• Note that Q(y|x) = p(x,y)
p(x) . Therefore,

H (Y |X) = −E [log2Q (Y |X )] = −E
[
log2

p (X, Y )

p (X)

]
= (−E [log2p (X, Y )])− (−E [log2p (X)])

= H (X, Y )−H (X)

Example 5.5. Continue from Example 5.3. Random variables X and Y

have the following joint pmf matrix P:
1
8

1
16

1
16

1
4

1
16

1
8

1
16 0

1
32

1
32

1
16 0

1
32

1
32

1
16 0


Find H(Y |X) and H(X|Y ).
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Definition 5.6. The mutual information14 I(X;Y ) between two random
variables X and Y is defined as

I (X;Y ) = H (X)−H (X |Y ) (20)

= H (Y )−H (Y |X ) (21)

= H (X) +H (Y )−H (X, Y ) (22)

= E
[
log2

p (X, Y )

p (X) q (Y )

]
=
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

p (x) q (y)
(23)

= E
[
log2

PX|Y (X |Y )

p (X)

]
= E

[
log2

Q (Y |X )

q (Y )

]
. (24)

• Mutual information quantifies the reduction in the uncertainty of one
random variable due to the knowledge of the other.

• Mutual information is a measure of the amount of information one
random variable contains about another [2, p 13].

• It is natural to think of I(X;Y ) as a measure of how far X and Y are
from being independent.

◦ Technically, it is the (Kullback-Leibler) divergence between the
joint and product-of-marginal distributions.

5.7. Some important properties

(a) H(X, Y ) = H(Y,X) and I(X;Y ) = I(Y ;X).
However, in general, H(X|Y ) 6= H(Y |X).

(b) I and H are always ≥ 0.

(c) There is a one-to-one correspondence between Shannon’s information
measures and set theory. We may use an information diagram, which

14The name mutual information and the notation I(X;Y ) was introduced by [Fano, 1961, Ch 2].
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is a variation of a Venn diagram, to represent relationship between
Shannon’s information measures. This is similar to the use of the Venn
diagram to represent relationship between probability measures. These
diagrams are shown in Figure 7.

𝐴 ∩ 𝐵 𝐵\A

𝐴 ∪ 𝐵

𝐴\B

𝐴

𝐵

𝑃 𝐴 ∩ 𝐵 𝑃 𝐵\A

𝑃 𝐴

𝑃 𝐵

𝑃 𝐴 ∪ 𝐵

𝑃 𝐴\B

𝐴

𝐵

Venn Diagram

𝐼 𝑋; 𝑌𝐻 𝑋|𝑌 𝐻 𝑌|𝑋

𝐻 𝑋

𝐻 𝑌

𝐻 𝑋, 𝑌

𝑋

𝑌

Information Diagram Probability Diagram

Figure 7: Venn diagram and its use to represent relationship between information measures
and relationship between information measures

• Chain rule for information measures:

H (X, Y ) = H (X) +H (Y |X ) = H (Y ) +H (X |Y ) .

(d) I(X;Y ) ≥ 0 with equality if and only if X and Y are independent.

• When this property is applied to the information diagram (or def-
initions (20), (21), and (22) for I(X, Y )), we have

(i) H(X|Y ) ≤ H(X),

(ii) H(Y |X) ≤ H(Y ),

(iii) H(X, Y ) ≤ H(X) +H(Y )

Moreover, each of the inequalities above becomes equality if and
only X |= Y .

(e) We have seen in Section 2.4 that

0
deterministic (degenerated)

≤ H (X) ≤ log2 |X |
uniform

. (25)

Similarly,

0
deterministic (degenerated)

≤ H (Y ) ≤ log2 |Y|
uniform

. (26)
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For conditional entropy, we have

0
∃g Y =g(X)

≤ H (Y |X ) ≤ H (Y )
X |= Y

(27)

and

0
∃g X=g(Y )

≤ H (X |Y ) ≤ H (X) .
X |= Y

(28)

For mutual information, we have

0
X |= Y

≤ I (X;Y ) ≤ H (X)
∃g X=g(Y )

(29)

and

0
X |= Y

≤ I (X;Y ) ≤ H (Y )
∃g Y =g(X)

. (30)

Combining 25, 26, 29, and 30, we have

0 ≤ I (X;Y ) ≤ min {H (X) , H (Y )} ≤ min {log2 |X | , log2 |Y|} (31)

(f) H (X |X ) = 0 and I(X;X) = H(X).

Example 5.8. Find the mutual information I(X;Y ) between the two ran-

dom variables X and Y whose joint pmf matrix is given by P =
[

1
2

1
4

1
4 0

]
.

Example 5.9. Find the mutual information I(X;Y ) between the two ran-

dom variables X and Y whose p =
[

1
4 ,

3
4

]
and Q =

[
1
4

3
4

3
4

1
4

]
.
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A Multiple Random Variables

In this class, there are many occasions where we have to deal with more
than one random variables at a time. Therefore, in this section, we provide
a review of some important concepts that are useful for dealing with multiple
random variables.

A.1 A Pair of Discrete Random Variables

Definition A.1. Joint pmf : If X and Y are two discrete random variables
the function pX,Y (x, y) defined by

pX,Y (x, y) = P [X = x, Y = y]

is called the joint probability mass function of X and Y .

(a) We can visualize the joint pmf via stem plot. See Figure 8.

(b) To evaluate the probability for a statement that involves both X and
Y random variables,
we first find all pairs (x, y) that satisfy the condition(s) in the state-
ment, and then add up all the corresponding values from the joint pmf.

Definition A.2. When both X and Y take finitely many values (both have
finite supports), say SX = {x1, . . . , xm} and SY = {y1, . . . , yn}, respectively,
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we can arrange the probabilities pX,Y (xi, yj) in an m× n matrix
pX,Y (x1, y1) pX,Y (x1, y2) . . . pX,Y (x1, yn)
pX,Y (x2, y1) pX,Y (x2, y2) . . . pX,Y (x2, yn)

...
... . . . ...

pX,Y (xm, y1) pX,Y (xm, y2) . . . pX,Y (xm, yn)

 . (32)

• We shall call this matrix the joint pmf matrix and denote it by PX,Y .

• The sum of all the entries in the matrix is one.

2.3 Multiple random variables 75

Example 2.13. In the preceding example, what is the probability that the first cache

miss occurs after the third memory access?

Solution. We need to find

P(T > 3) =
∞

∑
k=4

P(T = k).

However, since P(T = k) = 0 for k ≤ 0, a finite series is obtained by writing

P(T > 3) = 1−P(T ≤ 3)

= 1−
3

∑
k=1

P(T = k)

= 1− (1− p)[1+ p+ p2].

Joint probability mass functions

The joint probability mass function of X and Y is defined by

pXY (xi,y j) := P(X = xi,Y = y j). (2.7)

An example for integer-valued random variables is sketched in Figure 2.8.

0

1

2

3

4

5

6

7

8

0
1

2
3

4
5

6

0

0.02

0.04

0.06

j
i

Figure 2.8. Sketch of bivariate probability mass function pXY (i, j).

It turns out that we can extract the marginal probability mass functions pX (xi) and

pY (y j) from the joint pmf pXY (xi,y j) using the formulas

pX (xi) = ∑
j

pXY (xi,y j) (2.8)

Figure 8: Example of the plot of a joint pmf. [4, Fig. 2.8]

A.3. From the joint pmf, we can find pX(x) and pY (y) by

pX(x) =
∑
y

pX,Y (x, y) (33)

pY (y) =
∑
x

pX,Y (x, y) (34)

In this setting, pX(x) and pY (y) are call the marginal pmfs (to distinguish
them from the joint one).

(a) Suppose we have the joint pmf matrix in (32). Then, the sum of the
entries in the ith row is pX(xi), and
the sum of the entries in the jth column is pY (yj):

pX(xi) =
n∑

j=1

pX,Y (xi, yj) and pY (yj) =
m∑
i=1

pX,Y (xi, yj)
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(b) In MATLAB, suppose we save the joint pmf matrix as P XY, then the
marginal pmf (row) vectors p X and p Y can be found by

p_X = (sum(P_XY,2))’

p_Y = (sum(P_XY,1))

Definition A.4. The conditional pmf of X given Y is defined as

pX|Y (x|y) = P [X = x|Y = y]

which gives

pX,Y (x, y) = pX|Y (x|y)pY (y) = pY |X(y|x)pX(x). (35)

Definition A.5. Two random variables X and Y are said to be identically
distributed if, for every B, P [X ∈ B] = P [Y ∈ B].

A.6. To check whether two random varaibles X and Y are identically
distributed, it is easier to test another equivalent condition: Two random
variables X and Y are identically distributed if and only if

pX(c) = pY (c) for all c.

Definition A.7. Two random variables X and Y are said to be indepen-
dent if the events [X ∈ B] and [Y ∈ C] are independent for all sets B and
C.

A.8. To check whether two random varaibles X and Y are independent, it
is easier to test another equivalent condition: Two random variables X and
Y are independent if and only if

pX,Y (x, y) = pX(x)× pY (y) for all x, y.

Definition A.9. Two random variables X and Y are said to be inde-
pendent and identically distributed (i.i.d.) if X and Y are both
independent and identically distributed.

A.2 Multiple Discrete Random Variables

Here, we extend the concepts presented in the previous subsection, which
deals with only two random variables, into their general form. In particular,
we consider n random variables simultaneously.
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A.10. Random variables X1, X2, . . . , Xn can be characterized by their joint
pmf

pX1,X2,...,Xn
(x1, x2, . . . , xn) = P [X1 = x1, X2 = x2, . . . , Xn = xn] .

They are identically distributed if and only if

pXi
(c) = pXj

(c) for all c, i, j.

They are independent if and only if

pX1,X2,...,Xn
(x1, x2, . . . , xn) =

n∏
i=1

pXi
(xi) for all x1, x2, . . . , xn.

Definition A.11. A pairwise independent collection of random vari-
ables is a collection of random variables any two of which are independent.

Definition A.12. You may notice that it is tedious to write the n-tuple
(X1, X2, . . . , Xn) every time that we want to refer to this collection of ran-
dom variables. A more convenient notation uses a vector X to represent
all of them at once, keeping in mind that the ith component of X is the
random variable Xi. This allows us to express pX1,X2,...,Xn

(x1, x2, . . . , xn) as
pX(x).

Alternatively, when it is important to show the indices of the random
variables, we may write the vector in the form Xn

1 or X[n] where [n] =
{1, 2, . . . , n}.
A.13. The expected value of “any” function g of a discrete random variable
X can be calculated from

E [g(X)] =
∑
x

g(x)pX(x).

Similarly15, the expected value of “any” real-valued function g of multiple
discrete random variables can be calculated from

E [g(X)] =
∑
x

g(x)pX(x).

Note that E [·] is a linear operator. In particular,

E

[
n∑

i=1

cigi(Xi)

]
=

n∑
i=1

ciE [gi(Xi)] .

15Again, these are called the law/rule of the lazy statistician (LOTUS) [8, Thm 3.6 p 48],[4, p. 149]
because it is so much easier to use the above formula than to first find the pmf of g(X) or g(X,Y ). It is
also called substitution rule [7, p 271].
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