Instructions

1. Separate into groups of no more than three persons.
2. Only one submission is needed for each group.
3. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
4. Do not panic.

Name	ID

1. Consider a random variable X which has five possible values. Their probabilities are $1 / 4,1 / 4,1 / 4,1 / 8,1 / 8$.
a. Find the expected codeword length when Huffman coding is used without extension.

$$
\begin{aligned}
\mathbb{E}[l(x)] & =3 \times 2 \times \frac{1}{4}+2 \times 3 \times \frac{1}{84} \\
& =\frac{6}{4}+\frac{3}{4}=\frac{9}{4}=2.25 \text { bits } / \text { sym bol }
\end{aligned}
$$

b. Find the entropy (per symbol) of this random variable.

$$
\begin{aligned}
H(x) & =\sum_{a} p_{x}(a) \log _{2} p_{x}(a)=-3 \times \frac{1}{4} \log _{2} \frac{1}{4}-2 \times \frac{1}{8} \log _{2} \frac{1}{8} \\
& =3 \times \frac{2}{4}+2 \times \frac{3}{8}=\frac{9}{4}=2.25 \text { bits } / \text { symbol }
\end{aligned}
$$

2. No need to provide any explanation for this question.

Consider a DMC whose samples of input and output are provided below

$\mathrm{x}:$	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1
$\mathrm{y}:$	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1

Estimate the following quantities:
a. $\mathrm{P}[\mathrm{X}=0] \approx 3 / 15=1 / 5=0.2$
e. $\mathrm{P}[\mathrm{Y}=0 \mid \mathrm{X}=0] \approx \frac{2}{3} \approx 0.667$
b. $p(1) \equiv P[x=1] \approx 12 / 15=4 / 5=0.8$
f. $\quad P_{Y \mid X}(1 \mid 0) \equiv P_{1}[Y=1 \mid X=0]$

$$
\approx \frac{1}{3} \approx 0.333
$$

c. $p_{Y}(0) \equiv P[Y=0] \approx 2 / 15 \approx 0.133$
g. $Q(0 \mid 1) \equiv[Y=0 \mid X=1]$ $\approx \frac{0}{15}=0$
d. $q(1) \equiv P[Y=1] \approx 13 / 15 \approx 0.867$
i. Matrix $Q \approx \begin{gathered}\times y \\ 0\end{gathered}\left[\begin{array}{cc}0 & 1 \\ 2 / 3 & 1 / 3 \\ 0 & 1\end{array}\right]$
h. $Q(1 \mid 1)=P[Y=1 \mid X=1]$
$\approx \frac{15}{15}=1$
j. $P[X=0, Y=0] \approx \frac{2}{15} \leftarrow$ Note that this is the same as

$$
\begin{array}{r}
P[Y=0 \mid X=0] P[x=0] \\
\frac{2}{3} \times \frac{1}{5}=\frac{2}{15}
\end{array}
$$

