Instructions

- 1. Separate into groups of no more than three persons. Only one submission is needed for each group.
- Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
- 3. Do not panic.

Date: <u>24</u> / <u>01</u> / 2019			
Name	ID	(last 3 d	igits)
Prapun	5	5	5
•			

1. Consider two codes (for source coding) below. The left column is for Code A. The right column is for Code B. The first row defines these codes via their codebooks.

	Caution: the code alphabet is NOT the
Codebook for Code A	Codebook for Code B collection of all possible codewords.
	The code alphabet is
	r E I M N O the collection of all
c(x) 101 110 111 011 100	c(x) = 0 100 1010 1011 11 symbols that we can
	used to construct the
The source alphabet for Code A is	The code alphabet for Code B is
The source alphabet is the collection of all possible	Here, we see that the symbols used for
source symbols. Therefore, it can be easily extracted	each codeword are 0 and 1. Therefore,
from the codebook:	the code alphabet is {0,1}
{E, L, M, N, O}	
Use code A to encode the source string "NONE"	Use code B to encode the source string "NONE"
011100011101	1011 <mark>11</mark> 1011 <mark>0</mark>
A code is nonsingular if different	source symbols
Is Code A nonsingular? are mapped to different codeword	s.ls Code B nonsingular?
All five codewords in the codebook are different.	All five codewords in the codebook are different.
Therefore, yes , the code is nonsingular.	Therefore, yes, the code is nonsingular.
The string 110101111100011 is from encoding by Code	The string 10100100111011 is from encoding by Code B
	Decode it
Decode It.	
Decode string: LEMON	Decode string: MELON
Decode string. LENION	Decode string. MLLON

 Suppose we don't use letter space and word space in Morse code. Consider the following encoded string: ●●● ■■ ■■ ■■ ●●● Note that "SOS" and "EEATB" are two possible interpretations. Find four additional interpretations.

Indicate how the codewords are separated by "/"	Decoded message
	SOS
••• •••	EEATB
••• • • • • • • • • • •	3B
•••	V7
••/• === ==/•••	IJS
	S8E

There are other solutions as well.

Instructions

- 1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
- Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
- 3. Do not panic.
- 1. Consider a DMS whose source alphabet is {E,L,M,N,O}.

The probabilities for these five symbols are shown in the table below:

x	Е	L	М	Ν	0
p(x)	0.1	0.1	0.2	0.2	0.4

Consider two codes (for source coding) below.

The left column is for Code A. The right column is for Code B. The first row defines these codes via their codebooks.

Codebook for Code A	Codebook for Code B			
X E L M N O	x E L M N O			
c(x) 101 110 111 011 100	c(x) 0 100 1010 1011 11			
Is Code A prefix-free? Yes, no codeword is a prefix of another codeword. Observation: Any fixed-length non-singular codes are also prefix-free.	Is Code B prefix-free? Yes, no codeword is a prefix of another codeword. Remark: Some codewords have other codewords as the suffixes. However, we only consider prefix, not suffix.			
Suppose the DMS above is encoded by Code A.	Suppose the DMS above is encoded by Code B.			
Find the expected codeword length.	Find the expected codeword length.			
The length of all code word is 3. Therefore,	$\mathbb{E}[\mathcal{L}(X)] = 0.1(1+3) + 0.2(1+4) + 0.4 \times 2$			
$\mathbb{E}[\mathcal{L}(\times)] = 3$ bits per source symbol	= 2.8 bits per source symbol			

2. Consider a random variable X which has five possible values. Their probabilities are shown in the table below.

x	$p_{X}(x)$	c(x)	$\ell(x)$
Е	0.42 The tree can be contruct by	0	1
L	0.17 following Huffman's recipe. The grouping orders are	100	3
Μ	0.08 0.15 0.33 0 0.58 1 indicated by circled	1011	4
Ν	0.08 0 0.16 1 0.56 1 The code symbols on each	1010	4
0	0.25 branch are forced by having to make 1011 the codeword	11	2
	for M.		

a. Find a binary Huffman code (without extension) for this random variable.
 Put the values of the codewords and the codeword lengths in the table above.
 Note that the codeword for the source symbol "M" is required to be 1011.

b. Find the expected codeword length when Huffman coding is used (without extension).

= 0.42x1 + 0.17x3 + (0.08+0.08)x4 + 2x0.25 = 0.42 + 0.51 + 0.64 + 0.50 = 2.07 [bits per source symbol]

Date: 25/01/2019

Name	ID	ID (last 3 digits)	
Prapun	5	5	5
-			

Instructions

- 1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
- Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
- 3. Do not panic.

Date: <u>08</u> / <u>02</u> / 2019			
Name	ID	(last 3 d	igits)
Prapun	5	5	5
•			

- 1. A discrete memoryless source emits three possible messages Yes, No, and OK with probabilities 0.2 and 0.3, and 0.5, respectively.
 - a. Find the expected codeword length when Huffman binary code is used without extension.

The grouping orders are indicated by circled numbers.

0.2x2 + 0.3x2 + 0.5x1 = 1.5 bits per source symbol

Remark: The problem does not ask us to find the codewords. Only the codeword lengths are needed. Once the tree is formed, we can read the codeword lengths directly.

b. Find the codeword lengths when Huffman binary code with second-order extension is used to encode this source. Put the values of the corresponding probabilities and the codeword lengths in the table below. (Note that, for brevity, we use Y,N,K to represent Yes, No, and OK, respectively.)

$x_1 x_2$	$p_{X_1,X_2}(x_1,x_2)$	$\ell(x_1, x_2)$
ΥY	$0.2 \times 0.2 = 0.04$ The grouping orders are indicated by circled numbers.	4
YN	0.2x0.3 = 0.06 0.20 Note that there are many possible solution. This is just	4
YK	0.2x0.5 = 0.10 one of them. Remark: The problem does	3
NY	0.3x0.2 = 0.06 0.15 0.15 0.15	4
NN	0.3x0.3 = 0.09 (5) 0.30 lengths are needed. Once the tree is formed, we can read the	4
NK	0.3x0.5 = 0.15	3
KY	$0.5 \times 0.2 = 0.10$ (5) 1	3
KN	0.5x0.3 = 0.15	3
KK	0.5x0.5 = 0.25	2

Note that even when the Huffman'recipe is followed strictly, there are many possible solutions. For example, at Step 3, there are three choices of 0.1 that we can choose.

c. Find L_2 .

(This is the expected codeword length **per source symbol** of the Huffman binary code for the second-order extension of this source.)

(0.04+0.06+0.06+0.09)x4 + (0.10+0.15+0.10+0.15)x3 + 0.25x2 = 0.25x4 + 0.5x3 + 0.5 = 3 bits per two source symbols.

Same as part (a). So, the second-order extension does not help in this case.

Instructions

- Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
 Write down all the steps that you have done to obtain your answers. You may not get
- full credit even when your answer is correct without showing how you get your answer.
- 3. Do not panic.

1	Muite each of the following eventities in the forme V VVV	
	write each of the following dilantities in the form $\mathbf{X} \mathbf{X} \mathbf{X}$	(possibly with the nein of your calculator)
-	write each of the following quantities in the form <i>x</i> , <i>y</i>	(possibly with the help of your culculator).

a.
$$-\log_2(1/128) = -\log_2\left(\frac{1}{2^7}\right) = -\log_2\left(2^{-7}\right) = -(-7)\log_2 2 = 7.000$$

2. In each part below, we consider a random variable *X* which has five possible values. The probability for each possible value is listed in the provided table. Calculate the corresponding entropy value.

a.

$$\frac{x}{p(x)} = -\frac{2}{e} p(x) \log_2 p(x) = -3 \times \frac{1}{4} \log_2 \frac{1}{4} - 2 \times \frac{1}{8} \log_2 \frac{1}{6}$$

= -3 \times \frac{1}{4} \times (-2) - \times \times \frac{1}{4} \times (-3) = \frac{9}{4} = 2.25 [bits]

b.

x	E	L	М	Ν	0
<i>p</i> (<i>x</i>)	0.1	0.1	0.2	0.2	0.4

 $H(x) = -2 \times 0.1 \times \log_{2} 0.1 - 2 \times 0.2 \log_{2} 0.2 - 0.4 \log_{2} 0.4 = 2.1219 \text{ bits}$ -3.3219 -2.3219 -1.3219

c.

x	Е	L	М	Ν	0
p(x)	0.42	0.17	0.08	0.08	0.25

 $H(x) = -0.42 \underbrace{\log_2 0.42}_{-1.2515} - 0.17 \underbrace{\log_2 0.17}_{-2.5564} - 2 \times 0.08 \underbrace{\log_2 0.08}_{-3.6439} - 0.25 \underbrace{\log_2 0.25}_{-2} \approx 2.0433 \text{ bits}$

Date: 08 / 02 / 2019			
Name	ID	(last 3 d	igits)
Prapun	5	5	5
-			

Instructions

- 1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
- 2 Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
- 3. Do not panic.

- Date: 14/02/2019 Name ID (last 3 digits) <u>5 5 5</u> <u>Prapun</u>
- 1. No need to provide any explanation for this question. Consider a DMC whose samples of input and output are provided below

- Estimate the following quantities: a. X = {0, 1}
 - b. $P[X = 0] = \frac{6}{15} = \frac{2}{5} = 0.4$
 - c. $p(1) = P[X=1] = 1 P[X=0] = 1 \frac{2}{5} = \frac{3}{5} = 0.6$

 - e. $\underline{p} \equiv [p(0) \ p(1)] = [\frac{2}{5} \ \frac{3}{5}] = [0.4 \ 0.6]$
 - f. $q(1) = P[Y=1] = 1 P[Y=0] = 1 \frac{1}{3} = \frac{2}{3}$

- g. $P[Y = 0 | X = 0] = \frac{3}{6} = \frac{1}{2} = 0.5$
- h. $p_{Y|X}(1|0) = P[Y=1|X=0]$ =1- P[Y=0|X=0] = 1-0.5=0.5

i. $Q(0|1) = P[Y=0|X=1] = \frac{2}{9}$

j. Q(1|1) = P[Y=1|X=1] $= 1 - P[Y=0] \times = 1] = 1 - \frac{2}{9} = \frac{7}{9}$

Alternative method:

$$P[X=0, Y=0] = P(A \cap B) = P(A)P(B|A)$$
$$= P[X=0] P[Y=0|X=0]$$
$$= 0.4 \times 0.5 = 0.2$$
from port(g)
from fort(b)

Instructions

- 1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
- Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
- 3. Do not panic.

1. Consider a DMC whose transition matrix ${\bf Q}\,$ is

Date: <u>15</u> / <u>02</u> / 2019			
Name	ID	(last 3 d	igits)
Prapun	5	5	5
-			

 $x \setminus y$ 1 2 3 $x \setminus y$ 1 2 3 4 4 $\begin{bmatrix} 0.3 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \end{bmatrix} -$ ×0.4 ▶ [0.12 0.16 0.08 0.04] 1 ×0.5 → $0.10 \quad 0.25 \quad 0.05 \quad 0.10 = \mathbf{P}$ **O** = 2 ×0.1 3 ▶ 0.01 0.03 0.03 0.03 Σ Σ Σ| 0.23 0.16 0.17 0.44

Suppose the input probability vector is $\mathbf{p} = \begin{bmatrix} 0.4 & 0.5 & 0.1 \end{bmatrix}$.

- a) Find the joint pmf matrix $\, P \, . \,$ Put your answer next to the $\, Q \,$ matrix above.
- b) Find the output probability vector ${\boldsymbol{q}}$.

c) Suppose the naïve decoder is used. Find the corresponding $P(\mathcal{E})$.

 $A = Y_{x \setminus y} = 1 = 2 = 0.12 + 0.25 + 0.03$ $P = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0.12 & 0.16 & 0.08 & 0.04 \\ 0.10 & 0.25 & 0.05 & 0.10 \\ 0.01 & 0.03 & 0.03 \end{bmatrix} = 0.40$ $P(\varepsilon) = 1 - P(\varepsilon) = 1 - 0.40 = 0.60$

d) Suppose the following decoder is used. Find the corresponding $P(\mathcal{E})$.

y	$\hat{x}(y)$	$x \setminus y$	1	2	3	4	
1	3	D 1	0.12	0.16	0.08	0.04	P(C) = 0.01 + 0.16 + 0.08 + 0.03
2	1	$\mathbf{P} = \frac{1}{2}$	0.10	0.25	0.05	0.10	= 0.28
3	1	3	0.01) 0.03	0.03	0.03	P(E) = 1 - P(C) = 1 - 0.28
4	3						= 0.72

e) Suppose the decoder is $\hat{x}(y) = 2.5 - |y - 2.5|$ Find the corresponding $P(\mathcal{E})$.

У	y-2.5	2.5- (7-2.5)	$x \setminus y$ 1 2 3 4
1	-1.5	1	1 (0.12) 0.16 0.08 (0.04)
2	-0.5	2	r = 2 0.10 0.25 0.05 0.10
3	0.5	2	3 0.01 0.03 0.03 0.03
4	1.5	1	P(C) = 0.12+0.25+0.05+0.04
			= 0.46
			P(E) =1-0.46 =0.54

Instructions

- 1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
- Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
- 3. Do not panic.
- 1. Consider a DMC whose transition matrix $\,Q\,$ and joint pmf matrix $\,P\,$ are given below.

a) Find the MAP detector. Put your answer in the decoding table below. Also find the corresponding error probability.

у	$\hat{x}_{\text{MAP}}(y)$
1	1
2	2
3	1
4	2

P(C) = 0.12+0.25+0.08+0.10 = 0.55
P(E) = 1- P(C) = 1-0.55 = 0.45

b) Find the ML detector. Put your answer in the decoding table below. Also find the corresponding error probability.

у	$\hat{x}_{\text{ML}}(y)$
1	1
2	2
3	3
4	3

P(C) = 0.12+0.25+0.03+0.03 = 0.43 P(E) = 1-P(C) = 1-0.43 = 0.57

c) Find the pmf p(x) of the channel input X.

Recall that to get the P matrix from the Q matrix, we multiply each row of the Q matrix by the corresponding p(x). So, to get p(x), we simply divides each row of the P matrix by the corresponding row in the Q matrix. (In fact, only one representative from each row is enough.)

```
first column of the P matrix

0.12/0.3 = 0.4

0.10/0.2 = 0.5

0.01/0.1 = 0.1

p(\kappa) = \begin{cases} 0.4, & \kappa = 1, \\ 0.5, & \kappa = 2, \\ 0.1, & \kappa = 3, \\ 0, & 0 \text{ therewise} \end{cases}
```

 $p(x) = \begin{cases} 0.4, & x = 1, \\ 0.5, & x = 2, \\ 0.1, & x = 3, \\ 0, & 0 \text{ thermise} \end{cases}$ Alternatively recall, from ECS 315, that once the P matrix is there, one can get the pmf of X by summing along each row of the P matrix.

 Date:
 <u>21</u> / <u>02</u> / 2019

 Name
 ID (last 3 digits)

 Prapun
 5
 5

 Image: Second S

Instructions

- 1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
- Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
- Date:
 <u>28</u> / <u>02</u> / 2019

 Name
 ID (tast 3 digits)

 Prapun
 5
 5

 Image: State of the state

- 3. Do not panic.
- 1. Consider two random variables X and Y whose joint pmf matrix is given by

$$Q = \begin{bmatrix} 1/2 & 0 & 1/2 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 1/4 & 1/4 & 1/2 \end{bmatrix} \xrightarrow{\times 4^{-1}}_{= \times 2^{-1}} P = 2 \\ x = 3 \\ z = 3$$

b. H(X) First, we find p(x) by summing along each row of the P matrix.

$$-\sum_{x} p(x) \log_{2} p(x) = -2 \times \frac{1}{4} \log_{2} \frac{1}{4} - \frac{1}{2} \log_{2} \frac{1}{2} = -\frac{1}{2}(-2) - \frac{1}{2}(-1) = \frac{2+1}{2} = \frac{3}{2} = 1.5$$
[bits per symbol]

c. H(Y) First, we find q(y) by summing along each column of the P matrix. We then know that Y is a uniform RV with four equally-likely possibilities.

d.
$$H(Y|X)$$

 $= H(X,Y) - H(X) = 2.75 - 1.5 = 1.25 = \frac{5}{4}$ [bits per symbol] Note that this is calculating the (average) amount of randomness in Y (but given that we know the value of X). So the unit is per Y symbol.

e. Q matrix \leftarrow can be found by scaling each row of the P matrix by $\frac{1}{p(z)}$

1/2 0 1/2 0	< [★] [₩] [1/8 0 1/8 0]	8 2	p(ac)	1/1000
1/2 1/2 0 0	< ^{×™} 1/8 1/8 0 0	1	1/4	4
L 0 1/4 1/4 1/2	<mark>←[×]2</mark> 0 1/8 1/8 1/4]	3	1/2	2

f. H(Y|X=3)

We use the "x = 3" row of the Q matrix to calculate this conditional entropy.

$$= -2 \times \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{2} \log_2 \frac{1}{2} = -\frac{1}{2} (-2) - \frac{1}{2} (-1) = \frac{3}{2} = 1.5 \text{ Therefore, } H(Y|X) = \frac{3}{2} p(x) H(Y|X)$$

[bits per symbol] = $\frac{1}{7} \times 1 + \frac{1}{4} \times 1 + \frac{1}{2} \times \frac{3}{2} = \frac{9}{7}$

same as what we got

Instructions

Instructions		Date: 07 / 03 / 2019				
 Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your 		Name	ID (last 3 digits)			
		Prapun	5 5 5			
		-				
answer.						
5. Do not panie.						
1. Consider two random v We use the formula H(X,Y) can be four H(X,Y) can be four H(X) and $H(Y)$ can be $P = \begin{bmatrix} 0.2 & 0.2 \\ 0.2 & 0.4 \end{bmatrix} \rightarrow 0.6$ $\downarrow \qquad \downarrow$ 0.4 & 0.6 2. Consider two random v First, we find row of the G	ariables X and Y whose joint pmt ola $I(x; Y) = H(X) + H(Y)$ and directly from the el y) = -0.4 log_ 0.4 - 3×0.2 log be found by first finding $H(x) = -0.4 \log_2 0.4 - 0.6$ H(Y) = 0.9710 A and Y are identically distributed. So, they have the same entropy. ariables X and Y whose $\mathbf{p} = [0.6, -2.6]$ A the P matrix by scale	f matrix is given by $\mathbf{P} = \begin{bmatrix} 0.2 \\ 0.2 \\ 0.2 \end{bmatrix}$ ements in the P main provide the P mai	$= 0.2 \\ 0.4 \end{bmatrix} . \text{ Find } I(X;Y).$ trix: $= P \text{matrix}:$ $= 0.0200 $			
Then, we follow the $H(X,Y) = -0.24 \log_2 0$	same entropy calculation .24 - 0.28 log20.28 - 0.36 lo	$\frac{1}{20.36} = 0.12 \log_{2} 0.1$	्रु=[0.52 0.48 2			
21.9060		Alternatively				
		H(Y)x+4,)=H([04 0	0.6]) ≈ 0.97 10			
$H(x) = -0.6 \log_2 0.6$	$-0.4 \log_2 0.4 \approx 0.9710$	$H(Y X = R_{c}) = H([0.7 c])$	o.s]) ≈0.9§13			
H(Y) = -0.52 log 20.5	2-0.48 log20.48 ≈0.9988	H(Y X) = ∑ <i>p(x</i>) H(Y X I(X)Y) = H(Y) - H(Y X) & 0.6*0.9710+0.7*0.8813 &0.9351 :) & 0.9988 - 0.9351 &0.0638			
I(×; Y)= H(x) + H(Y) - H(X,Y) 20.9710+0.9989	8 - 1.9060 20.0638	Note: when the answer here is small, it is important that you go back and make sure that you keep enough decimal paces in your calculation.			
3. (0 pt) Consider two rand	dom variables X and Y whose ${f Q}$	$= \begin{bmatrix} 0.4 & 0.6\\ 0.4 & 0.6 \end{bmatrix}$. Find $I(X;Y)$				
Note that the t depend on <i>sc</i> . I (conditional) pr which implies I(x	two rows in Q are ide in other words, knowing f of Y. Therefore, f(y) = 0.	ntical. This means , the value of X di X and Y are indep	Q(yl=c) does not bes not change the bendent			
sec next page f	for a more direct solut	ion.				

Remark: Normally, to calculate I(X;Y) you will need both p and Q. SO, there must be something special about Q that allows you to get I(X;Y) without p.

Direct calculation:

$$H(Y|z) = H([0.6 0.4]) \approx 0.9710 \text{ for any } z$$

$$S_{0} H(Y|x) = \underset{k}{Z} p(z) H(Y|z) \approx 0.9710 \underset{1}{Z} p(z) \approx 0.9710$$

$$I(x;Y) = H(Y) - H(Y|X), S_{0} we need H(Y) which in twn need $g(Y)$

$$Let's try \quad p(z) = \begin{cases} 1-p & z=0 \\ p, & z=1 \\ 0, & 0 \text{ therwise} \end{cases}$$

$$Then, \qquad P \quad (a) = \begin{cases} 0.6 & 0.4 \\ 0.6 & 0.4 \\ 0.6 & 0.4 \end{cases} = [0.6 & 0.4] \Rightarrow H(Y) = H([0.6 & 0.4])$$

$$regardless of the value of p$$$$

Therefore, I(x; Y) = H(Y) - H(Y)X) = 0.

Instructions

- 1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
- 2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your

Check that

answer. 3. **Do not panic.**

1.	For each of the following DMC's probability transition matrices Q , (i) indicate whether the corresponding
	DMC is weakly symmetric (Yes or No), (ii) evaluate the corresponding capacity value (your answer should
	be of the form X.XXXX), and (iii) specify the channel input pmf (a row vector p) that achieves the capacity.

		(1) all the rows of and	Q are permutations of each other
(2) all the column			sums are equal
	crossover probability	Weakly Symmetric?	C This is computed in the
	0.60.40.40.6	Yes. BSC is symmetric and hence weakly symmetric.	For BSC, C = 1 - h(p) = 1 - h(0.4) $\approx 1 - 0.9710$ $\approx 0.0290 [bpcu]$ C = 1 - h(0.4) = 1 - h(0.4) $\approx 0.0290 [bpcu]$ C = 1 - h(p) = 1 - h(0.4) = 1 - h(0.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Or Or Yes	$ \begin{array}{c} \log_{2} \mathcal{Y} - H(\underline{r}) \\ = \log_{2} 4 - H([0.5 \ 0.5]) \\ = 2 - 1 = 1 \ [bpcv] \end{array} $
	$\begin{bmatrix} 0.5 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0.5 & 0 & 0.5 & 0 \end{bmatrix}$	(1)× (€)× N₀	Note that there is only one non-zero element in each column \Rightarrow This is NO ² channel $\Rightarrow C = \log_2 \mathcal{X} \qquad \Rightarrow C$ is achieved by uniform X $= \log_2 4$ $\approx 2 [bpcu] \qquad P = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 4 & 4 & 4 \end{bmatrix}$
	$\begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.3 & 0.2 & 0.5 \end{bmatrix}$	() ✓ (2) × N 0	Note that all the rows of Q are the same $\Rightarrow Q(y x)$ does not depend on $x \Rightarrow X \perp Y$ $\Rightarrow I(x;Y) = 0$ for any $p(x)$ Any p will give $\Rightarrow C = 0.0000[bpcu]$ the same $I(X;Y) = C = 0$.

Specifically, any $p \in [p_1 \ p_2]$ such that $p_1, p_2 \ge 0$ and $p_1 + p_2 = 1$ will work.

Date: **08**/ **03**/ 2019

Name	
Prapun	

ID (last 3 digits)

5 5 5