ECS 452: In-Class Exercise \# 1

Instructions

1. Separate into groups of no more than three persons. Only one submission is needed for each group.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $\underline{\mathbf{2 4} / \mathbf{0 1} / 2019}$			
Name	ID		
Prapun	5	5	$\mathbf{5}$

1. Consider two codes (for source coding) below. The left column is for Code A. The right column is for Code B. The first row defines these codes via their codebooks.

Caution: the code alphabet is NOT the

2. Suppose we don't use letter space and word space in Morse code. Consider the following encoded string: \bullet ・ー Note that "SOS" and "EEATB" are two possible interpretations. Find four additional interpretations.

Indicate how the codewords are separated by " $/ "$	Decoded message	

There are other solutions as well.

ECS 452: In-Class Exercise \# 2

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: 25/ 01/ 2019			
Name	ID ${ }_{\text {masa }}$		
Prapun	5	5	5

1. Consider a $D M S$ whose source alphabet is $\{E, L, M, N, O\}$.

The probabilities for these five symbols are shown in the table below:

x	E	L	M	N	O
$p(x)$	0.1	0.1	0.2	0.2	0.4

Consider two codes (for source coding) below.
The left column is for Code A. The right column is for Code B.
The first row defines these codes via their codebooks.

Codebook for Code A						Codebook for Code B					
x	E	L	M	N	0	x	E	L	M	N	0
$c(x)$	101	110	111	011	100	$c(x)$	0	100	1010	1011	11
Is Code A prefix-free? Yes, no codeword is a prefix of another codeword. Observation: Any fixed-length non-singular codes are also prefix-free.						$\begin{aligned} & \text { bo } \\ & \text { lsco } \\ & \text { Yes, } \\ & \text { Rem } \\ & \text { suffix } \\ & \hline \end{aligned}$			ree? d is a odewo r, we		
Suppose the DMS above is encoded by Code A. Find the expected codeword length. The length of all code word is 3 . Therefore, $\mathbb{E}[\ell(x)]=3 \text { bits per source symbol }$						Supp Find IE $[\ell$		$\overline{\mathrm{e} D N}$	abov code . $1(1$	3) 1.6 its	gth. 0.2

2. Consider a random variable X which has five possible values. Their probabilities are shown in the table below.

X	$p_{X}(x)$		$c(x)$	$\ell(x)$
E		The tree can be contruct by following Huffman's recipe. The grouping orders are indicated by circled numbers. The code symbols on each branch are forced by having to make 1011 the codeword	0	1
L			100	3
M			1011	4
N			1010	4
O				2

a. Find a binary Huffman code (without extension) for this random variable.

Put the values of the codewords and the codeword lengths in the table above.
Note that the codeword for the source symbol " M " is required to be 1011.
b. Find the expected codeword length when Huffman coding is used (without extension).

$$
\begin{aligned}
& =0.42 \times 1+0.17 \times 3+(0.08+0.08) \times 4+2 \times 0.25 \\
& =0.42+0.51+0.64 \quad+0.50 \\
& =2.07 \text { [bits per source symbol] }
\end{aligned}
$$

ECS 452: In-Class Exercise \# 3

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

Date: $\underline{\mathbf{0 8}} / \underline{\mathbf{0 2}} / 2019$			
Name	ID		
Prapun	5	5	$\mathbf{5}$

1. A discrete memoryless source emits three possible messages Yes, No, and OK with probabilities 0.2 and 0.3 , and 0.5 , respectively.
a. Find the expected codeword length when Huffman binary code is used without extension.

The grouping orders are indicated by circled numbers.

$p(n)$				
0.2	$n)$			
				2
0.3		0.5		2
			1	2
0.5			1	

$$
0.2 \times 2+0.3 \times 2+0.5 \times 1=1.5 \text { bits per source symbol }
$$

Remark: The problem does not ask us to find the codewords. Only the codeword lengths are needed. Once the tree is formed, we can read the codeword lengths directly.
b. Find the codeword lengths when Huffman binary code with second-order extension is used to encode this source. Put the values of the corresponding probabilities and the codeword lengths in the table below. (Note that, for brevity, we use Y,N,K to represent Yes, No, and OK, respectively.)

$X_{1} X_{2}$	$p_{X_{1}, X_{2}}\left(x_{1}, X_{2}\right)$		$\ell\left(x_{1}, x_{2}\right)$
YY	$0.2 \times 0.2=0.04$	The grouping orders are indicated by circled numbers.	4
YN	$x 0.3=0.06$	Note that there are many possible solution. This is just	4
YK	2x0.5 $=0.10$	one of them. Remark: The problem does	3
NY	$0.3 \times 0.2=0.0$	not ask us to find the codewords. Only the codeworr	4
NN	$0.3 \times 0.3=0.09$	lengths are needed. Once the tree is formed, we can read the	4
NK	$0.3 \times 0.5=0.15$	codeword lengths directly.	3
KY	$5 \times 0.2=0.10$		3
KN	$0.5 \times 0.3=0.15$	0.55	3
KK	$0.5 \times 0.5=0.25$		2

Note that even when the Huffman'recipe is followed strictly, there are many possible
c. Find L_{2}. solutions. For example, at Step 3, there are three choices of 0.1 that we can choose.
(This is the expected codeword length per source symbol of the Huffman binary code for the second-order extension of this source.)
$(0.04+0.06+0.06+0.09) \times 4+(0.10+0.15+0.10+0.15) \times 3+0.25 \times 2$
$=0.25 \times 4+0.5 \times 3+0.5=3$ bits per two source symbols.
$L_{2}=\frac{3}{2}=1.5$ bits per source symbol

ECS 452: In-Class Exercise \# 4

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $\underline{\mathbf{0 8}} / \underline{\mathbf{0 2}} / 2019$			
Name	ID		
Prapun	5	5	5

1. Write each of the following quantities in the form $X . X X X$ (possibly with the help of your calculator).
a. $-\log _{2}(1 / \underbrace{128}_{2^{7}})=-\log _{2}\left(\frac{1}{2^{7}}\right)=-\log _{2}\left(2^{-7}\right)=-(-7) \underbrace{\log _{2} 2}_{1}=7.000$
b. $\quad-\log _{2}(0.6) \approx 0.737$

Method 1

$$
-\log _{2} a=-\frac{-\log _{e} a}{\log _{e} 2}=-\frac{\ln (0.6)}{\ln (2)} \approx-\frac{-0.5108}{0.6931} \approx 0.7370
$$

Method 2

$$
-\log _{2} a=\frac{-\log _{10} a}{\log _{10} 2}=\frac{-\log _{10}(0.6)}{\log _{10}(2)} \approx-\frac{-0.2218}{0.3010} \approx 0.7369
$$

c. $\underbrace{-(0.4) \underbrace{\log _{2}(0.4)}_{-1.3219}}_{0.5288} \underbrace{-(0.6) \underbrace{\log _{2}(0.6)}_{-0.7370}}_{0.4422} \approx 0.971$
2. In each part below, we consider a random variable X which has five possible values. The probability for each possible value is listed in the provided table. Calculate the corresponding entropy value.
a.

x	E	L	M	N	O
$p(x)$	0.25	0.25	0.25	0.125	0.125

$$
\begin{aligned}
H(x) & =-\sum_{x} p(x) \log _{2} p(\alpha)=-3 \times \frac{1}{4} \log _{2} \frac{1}{4}-2 \times \frac{1}{8} \log _{2} \frac{1}{8} \\
& =-3 \times \frac{1}{4} \times(-2)-2 x \frac{1}{8} \times(-3)=\frac{9}{4}=2.25 \quad[\text { bits }]
\end{aligned}
$$

b.

x	E	L	M	N	O
$p(x)$	0.1	0.1	0.2	0.2	0.4

$H(x)=-2 \times 0.1 \times \underbrace{\log _{2} 0.1}_{-3.3219}-2 \times 0.2 \underbrace{\log _{2} 0.2}_{-2.3219}-0.4 \underbrace{\log _{2} 0.4}_{-1.3219} \simeq 2.1219$ bits
c.

x	E	L	M	N	O
$p(x)$	0.42	0.17	0.08	0.08	0.25

$$
H(x)=-0.42 \underbrace{\log _{2} 0.42}_{-1.2515}-0.17 \underbrace{\log _{2} 0.17}_{-2.5564}-2 \times 0.08 \underbrace{\log _{2} 0.08}_{-3.6439}-0.25 \underbrace{\log _{2} 0.25}_{-2} \approx 2.0433 \text { bits }
$$

ECS 452: In-Class Exercise \# 5

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.
4. No need to provide any explanation for this question.

Consider a DMC whose samples of input and output are provided below

$$
\begin{array}{l:lllllllllllllll}
\mathrm{x}: & 1 & 1 & 1 & \underline{0} & 1 & \underline{0} & 1 & \underline{0} & 1 & 1 & 0 & 1 & 1 & 0 & \underline{0} \\
\mathrm{y}: & 1 & 1 & 1 & \underline{0}_{1}^{2} & 1 & \underline{0}^{1} & 1 & 1 & \underline{0}^{1} & 1 & 1 & \underline{0}_{1}^{1} & 1 & 1 & \underline{0}^{2}
\end{array}
$$

Estimate the following quantities:
channel input alphabet $=$ support of x
a. $\mathscr{X}=\{0,1\}$
b. $P[X=0]=\frac{6}{15}=\frac{2}{5}=0.4$
c. $p(1) \equiv P[x=1]=1-P[x=0]=1-\frac{2}{5}=\frac{3}{5}=0.6$
d. $\mathrm{P}_{\mathrm{Y}}(0) \equiv P[Y=0]=\frac{5}{15}=\frac{1}{3}$
e. $\underline{p} \equiv[p(0) p(1)]=\left[\begin{array}{ll}\frac{2}{5} & \frac{3}{5}\end{array}\right]=\left[\begin{array}{ll}0.4 & 0.6\end{array}\right]$
f. $q(1)=P[Y=1]=1-P[Y=0]=1-\frac{1}{3}=\frac{2}{3}$
g. $P[Y=0 \mid X=0]=\frac{3}{6}=\frac{1}{2}=0.5$
h. $\operatorname{pry}_{Y \mid X}(1 \mid 0) \equiv P[Y=1 \mid X=0]$

$$
=1-P[Y=0 \mid X=0]=1-0.5=0.5
$$

i. $Q(0 \mid 1) \equiv P[Y=0 \mid X=1]=\frac{2}{9}$
j. $Q(1 \mid 1) \equiv P[Y=1 \mid X=1]$

$$
=1-P[Y=0 \mid X=1]=1-\frac{2}{9}=\frac{7}{9}
$$

k. Matrix \mathbf{Q}

I. $P[X=0, Y=0]=\frac{3}{15}=\frac{1}{5}=0.2$

Alternative method:
$\begin{aligned} P[\underbrace{x=0,}_{A} \underbrace{Y=0}_{B}] & =P(A \cap B)=P(A) P(B \mid A) \\ & =P[X=0] P[Y=0 \mid x=0]\end{aligned}$
$=\underbrace{0.4}_{\Gamma} \times{\underset{\uparrow}{\text { from port (g) }}}_{0.5}^{0.5}=0.2$
part (b)

ECS 452: In-Class Exercise \# 6

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

Date: $\mathbf{1 5} / \underline{\mathbf{0 2}} / 2019$			
Name	ID		
Prapun	5	5	5

1. Consider a DMC whose transition matrix \mathbf{Q} is

Suppose the input probability vector is $\underline{\mathbf{p}}=\left[\begin{array}{lll}0.4 & 0.5 & 0.1\end{array}\right]$.

$$
\left[\begin{array}{llll}
0.23 & 0.44 & 0.16 & 0.17
\end{array}\right]
$$

a) Find the joint pm matrix \mathbf{P}. Put your answer next to the \mathbf{Q} matrix above.
b) Find the output probability vector $\underline{\mathbf{q}}$.

$$
\left[\begin{array}{llll}
0.23 & 0.44 & 0.16 & 0.17
\end{array}\right]
$$

c) Suppose the naïve decoder is used. Find the corresponding $P(\mathcal{E})$.

$$
\begin{aligned}
& \left.\hat{x}=y_{x \backslash y} 1 \begin{array}{lllll}
& 2 & 3 & 4 & P(C)
\end{array}\right)=0.12+0.25+0.03 \\
& \mathbf{P}=\begin{array}{l}
1 \\
2 \\
3
\end{array} \quad\left[\begin{array}{llll}
10.12 & 0.16 & 0.08 & 0.04 \\
0.10 & 0.25 & 0.05 & 0.10 \\
0.01 & 0.03 & 0.03 & 0.03
\end{array}\right] \\
& =0.40 \\
& P(\varepsilon)=1-P(C)=1-0.40=0.60
\end{aligned}
$$

d) Suppose the following decoder is used. Find the corresponding $\underset{1}{P}(\mathcal{E})$.

y	$\hat{x}(y)$
1	3
2	1
3	1
4	3

$$
\mathbf{P}=\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned} \quad\left[\begin{array}{llll}
0.12 & 0.16 & 0.08 & 0.04 \\
0.10 & 0.25 & 0.05 & 0.10 \\
0.01 & 0.03 & 0.03 & 0.03
\end{array}\right]
$$

$$
\begin{aligned}
P(C) & =0.01+0.16+0.08+0.03 \\
& =0.28 \\
P(\varepsilon) & =1-P(C)=1-0.28 \\
& =0.72
\end{aligned}
$$

e) Suppose the decoder is $\hat{x}(y)=2.5-|y-2.5|$

Find the corresponding $P(\mathcal{E})$.

y	$y-2.5$	$2.5-\|y-2.5\|$
1	-1.5	1
2	-0.5	2
3	0.5	2
4	1.5	1

$$
\begin{aligned}
& \\
& \mathbf{P}=\begin{array}{l}
x \backslash y \\
1 \\
2 \\
3
\end{array}\left.\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0.12 & 0.16 & 0.08 & 0.04 \\
0.10 & 0.25 & 0.05 & 0.10 \\
0.01 & 0.03 & 0.03 & 0.03
\end{array}\right] \\
& P(C) \\
&=0.12+0.25+0.05+0.04 \\
&=0.46 \\
& P(\varepsilon)
\end{aligned}
$$

ECS 452: In-Class Exercise \# 7

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $\mathbf{2 1} / \mathbf{0 2} / 2019$		
Name	ID $_{\text {ans }}$	
Prapun	$\mathbf{5}$	$\mathbf{5}$
	$\mathbf{5}$	

1. Consider a DMC whose transition matrix \mathbf{Q} and joint pmf matrix \mathbf{P} are given below.

$\mathbf{Q =}$| $x \backslash y$ |
| :--- |
| 1 |
| 2 |
| 3 | | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $\underline{0.3}$ | 0.4 | 0.2 | 0.1 |
| 0.2 | $\underline{0.5}$ | 0.1 | 0.2 |
| 0.1 | 0.3 | $\underline{0.3}$ | $\underline{0.3}$ |$\quad \mathbf{P}=$| $x \backslash y$ |
| :---: |
| 1 |
| 2 |
| 3 |\(\quad\left[\begin{array}{ccccc}0.12 \& 0.16 \& 0.08 \& 0.04

0.10 \& 0.25 \& 0.05 \& 0.10

0.01 \& 0.03 \& 0.03 \& 0.03\end{array}\right]\)
a) Find the MAP detector. Put your answer in the decoding table below.

Also find the corresponding error probability.

y	$\hat{x}_{\mathrm{MAP}}(y)$
1	1
2	2
3	1
4	2

$$
\begin{aligned}
& P(C)=0.12+0.25+0.08+0.10=0.55 \\
& P(\varepsilon)=1-P(C)=1-0.55=0.45
\end{aligned}
$$

b) Find the ML detector. Put your answer in the decoding table below. Also find the corresponding error probability.

y	$\hat{x}_{\text {ML }}(y)$
1	$\mathbf{1}$
2	$\mathbf{2}$
3	3
4	$\mathbf{3}$

$$
\begin{aligned}
& P(C)=0.12+0.25+0.03+0.03=0.43 \\
& P(\varepsilon)=1-P(C)=1-0.43=0.57
\end{aligned}
$$

c) Find the pmf $p(x)$ of the channel input X.

Recall that to get the P matrix from the Q matrix, we multiply each row of the Q matrix by the corresponding $p(x)$. So, to get $p(x)$, we simply divides each row of the P matrix by the corresponding row in the Q matrix. (In fact, only one representative from each row is enough.)
first column of the P matrix
$0.12 i 0.3=0.4$
$0.10 \% 0.2=0.5$
$0.01 \% .1=0.1$

$$
p(x)=\left\{\begin{array}{cl}
0.4, & x=1, \\
0.5, & x=2, \\
0.1, & x=3 \\
0, & 0 \text { therwise }
\end{array}\right.
$$

Alternatively recall, from ECS 315, that once the P matrix is
there, one can get the purf of x by summing along each row of the P matrix.

ECS 452: In-Class Exercise \# 8

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

3. Consider two random variables X and Y whose joint mf matrix is given by

Calculate the following quantities.

a. $H(X, Y) \equiv \underset{(x, y)}{-\sum_{2}} p(x, y) \log _{2} p(x, y)=-6 \times \frac{1}{8} \log _{2} \frac{1}{8}-\frac{1}{4} \log _{2} \frac{1}{4}$

$$
=-\frac{3}{4}(-3)-\frac{1}{4}(-2)=\frac{9+2}{4}=\frac{11}{4}=2.75 \quad \text { [bits per pair] } \underbrace{\text { [}}_{\text {pair of symbols }(X, Y)} \text {. }
$$

b. $H(X)$ First, we find $\mathrm{p}(\mathrm{x})$ by summing along each row of the P matrix.
"
$-\sum_{x} p(x) \log _{2} p(x)=-2 \times \frac{1}{4} \log _{2} \frac{1}{4}-\frac{1}{2} \log _{2} \frac{1}{2}=-\frac{1}{2}(-2)-\frac{1}{2}(-1)=\frac{2+1}{2}=\frac{3}{2}=1.5$
c. $H(Y)$ First, we find $q(y)$ by summing along each column of the \mathbf{P} matrix.

We then know that Y is a uniform $R V$ with four equally-likely possibilities.

$$
\text { Therefore, } H(Y)=\log _{2} 4=2 \text { [bits per symbol] }
$$

Alternatively, $\mathrm{H}(\mathrm{y})=-\sum_{\gamma} \mathrm{Y}(y) \log _{2} q(y)$
$=-4 \times \frac{1}{4} \log _{2} \frac{1}{4}$
d. $H(Y \mid X)$
$=-\log _{2} 2^{-2}=2$

$$
=H(X, Y)-H(X)=2.75-1.5=1.25=\frac{5}{4} \quad \text { [bits per symbol] } \begin{aligned}
& \text { Note that this is calculating the } \\
& \begin{array}{l}
\text { (veragag) amount of randomness in } \\
\text { (bout given that we know the value } \\
\text { of } X) \text {. So the unit is per } Y \text { symbol. }
\end{array}
\end{aligned}
$$

e. Q matrix \leftarrow can be found by scaling each row of the P matrix by $\frac{1}{p(a)}$

$$
\left[\begin{array}{cccc}
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 \\
0 & 1 / 4 & 1 / 4 & 1 / 2
\end{array}\right] \stackrel{\times 4}{\stackrel{\times 4}{* 2}}\left[\begin{array}{cccc}
1 / 8 & 0 & 1 / 8 & 0 \\
1 / 8 & 1 / 8 & 0 & 0 \\
0 & 1 / 8 & 1 / 8 & 1 / 4
\end{array}\right] \quad\left[\begin{array}{lll}
x & r(a) & 1 / \rho(a x) \\
1 & 1 / 4 & 4 \\
2 & 1 / 4 & 4 \\
3 & 1 / 2 & 2
\end{array}\right.
$$

f. $H(Y \mid X=3)$
\measuredangle We use the " $x=3$ " row of the Q matrix to calculate this conditional entropy.

$$
=-2 \times \frac{1}{4} \log _{2} \frac{1}{4}-\frac{1}{2} \log _{2} \frac{1}{2}=-\frac{1}{2}(-2)-\frac{1}{2}(-1)=\frac{3}{2}=1.5 \text { There tore, } H(y \mid x)=\sum_{\infty} p(l) H(y \mid x)
$$

ECS 452: In-Class Exercise \# 9

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer
3. Do not panic.

4. Consider two random variables X and Y whose joint pmf matrix is given by $\mathbf{P}=\left[\begin{array}{ll}0.2 & 0.2 \\ 0.2 & 0.4\end{array}\right]$. Find $I(X ; Y)$.

We use the formula $I(X ; Y)=H(X)+H(Y)-H(X, Y)$.
$H(X, Y)$ can be found directly from the elements in the p matrix:

$$
H(x, y)=-0.4 \log _{2} 0.4-3 \times 0.2 \log _{2} 0.2 \approx 1.9219
$$

$H(x)$ and $H(y)$ can be found by first finding $p(x)$ and $q(y)$ from the P matrix:

$$
\left.\begin{array}{c}
P=\left[\begin{array}{cc}
0.2 & 0.2 \\
0.2 & 0.4
\end{array}\right] \rightarrow 0.4 \\
\downarrow \\
\downarrow \\
0.4 \\
\downarrow
\end{array}\right)
$$

Remark: Normally, to calculate $I(x ; y)$ you will need both p and Q. So, there must be something special about Q that allows you to get $I(x ; y)$ without $P_{\text {. }}$.

Direct calculation :
$H(Y \mid x)=H([0.60 .4]) \approx 0.9710$ for any x
So, $H(Y \mid X)=\sum_{\alpha} p(e, H(Y \mid \alpha) \approx 0.9710 \underbrace{\sum_{x} p(a)}_{1} \approx 0.9710$
$I(X ; Y)=H(Y)-H(Y \mid X)$. So, we need $H(Y)$ which in turn need of (y)

Let's try $p(x)= \begin{cases}1-p_{0} & e=0 \\ p_{,} & e=1 \\ 0, & \text { otherwise }\end{cases}$
Then,

$$
\left[\begin{array}{cc}
P_{-} & P
\end{array}\right]\left[\begin{array}{cc}
0.6 & 0.4 \\
0.6 & 0.4
\end{array}\right]=\left[\begin{array}{ll}
0.6 & 0.4
\end{array}\right] \Rightarrow H(Y)=H\left(\left[\begin{array}{ll}
0.6 & 0.4
\end{array}\right]\right)
$$

Therefore, $I(X ; Y)=H(Y)-H(Y \mid X)=0$.

ECS 452: In-Class Exercise \# $1 \mathbf{1 0}$

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $\mathbf{0 8} / \underline{\mathbf{0 3}} / 2019$			
Name	ID		
Prapun	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$

1. For each of the following DMC's probability transition matrices \mathbf{Q}, (i) indicate whether the corresponding DMC is weakly symmetric (Yes or No), (ii) evaluate the corresponding capacity value (your answer should be of the form X.XXXX), and (iii) specify the channel input pmf (a row vector \mathbf{p}) that achieves the capacity.

Check that
(1) all the rows of Q are permutations of each other
and
(2) all the column sums are equal

(1) all the rows of Q are permutations of each other and (2) all the column sums are equal		
$\underset{p}{\text { crossover probability }}$	$\begin{gathered} \text { Weakly } \\ \text { Symmetric? } \end{gathered}$	
This is the Q matrix for a BSC.	Yes. BSC is symmetric and hence weakly symmetric.	For BSC, $\left.\begin{array}{rl} \text { or BSC, } \\ C & =1-h(p) \\ & =1-h(0.4) \\ & \approx 1-0.9710 \\ & \approx 0.0290[\text { is achieved } \\ \text { uniform } x \end{array}\right] \text {. } \quad \text {. }=\left[\begin{array}{ll} \frac{1}{2} & 1 \\ 2 \end{array}\right]$
$\left.\begin{array}{\|cccc}0 & 0 & 0.5 & 0.5 \\ \hline 0.5 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0\end{array}\right]$		$\begin{aligned} & \log _{2}\|y\|-H(\underline{r}) \\ & =\log _{2} 4-H\left(\left[\begin{array}{lll} 0.5 & 0.5 \end{array}\right]\right) \\ & =2-1=1 \quad\left[\begin{array}{l} b p c u \end{array}\right] \end{aligned} \quad \begin{aligned} & \quad C \text { is achieved by } \\ & \text { uniform } x \end{aligned} \quad \text { on } x=\left[\begin{array}{llll} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{array}\right]$
$\left[\begin{array}{cccccc}0.5 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0.5 & 0 & 0.5 & 0\end{array}\right]$	$\begin{array}{ll} \text { (1) } x & \\ \text { (2) } \times \quad N o \end{array}$	Note that there is only one non-zero element in each column \Rightarrow This is NO^{2} channal $\begin{aligned} \Rightarrow c & =\log _{2}\|x\| \\ & =\log _{2} 4 \\ & \approx 2\left[b_{p c c}\right] \end{aligned} \quad \Rightarrow c \text { is achieved by uniform } x$
$\left[\begin{array}{lll}0.3 & 0.2 & 0.5 \\ 0.3 & 0.2 & 0.5\end{array}\right]$	(1) $\text { (2) } x$ No	Note that all the rows of Q are the same $\Rightarrow Q(y \mid x)$ does not depend on $x \Rightarrow x \Perp Y$ $\Rightarrow I(x ; y)=0$ for any p(a) Any p will give $\Rightarrow C=0.0000[b \rho C u] \quad$ the same $I(X ; Y)=C=0$.

Specifically, any $p=\left[\begin{array}{ll}p_{1} & p_{2}\end{array}\right]$
such that $p_{1}, p_{2} \geqslant 0$
and $p_{1}+p_{2}=1$
will work.

