ECS 452: In-Class Exercise # 7 Sol

Instructions

- 1. Separate into groups of no more than three students each. The group cannot be the same as any of your former groups. Only one submission is needed for each group.
- 2. [ENRE] Explanation is not required for this exercise.
- [WASP] Write your answer(s) in the corresponding space(s) provided. 3.
- 4. Do not panic.

Date: 7 / 2 / 2020						
Name	ID	ID (last 3 digits)				

- 1. Consider a binary channel whose Q(0|0) = 0.7 and Q(0|1) = 0.3. Suppose P[X=1] = 0.4.
 - Find the channel matrix \mathbf{Q} , the output probability vector \mathbf{q} , and the joint pmf matrix \mathbf{P} .

	the second s	
The question explicitly specifies two elements in the Q matrix. The other two elements can be calculated by using the fact that, in the Q matrix, any	$\begin{array}{c} \mathbf{Q} \text{ matrix} \\ x \setminus y \\ 0 \\ 1 \\ 0.7 \\ 0.3 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.4 \\ 0$	$\begin{array}{c c} & \mathbf{P} \text{matrix} \\ & x \setminus y & 0 & 1 \\ \hline & 0 & \begin{bmatrix} 0.42 & 0.18 \\ 0.12 & 0.28 \end{bmatrix} \\ & \Sigma & \Sigma \end{array}$
row sum should be 1.		<u>q</u> [0.54 0.46]

2. Consider a DMC whose channel matrix \mathbf{Q} is given below. Suppose the input probability vector is $\mathbf{p} = [0.4, 0.3, 0.2, 0.1]$. Calculate the missing values in the Q matrix.

Then, find the output probability vector \mathbf{q} and the joint pmf matrix \mathbf{P} .

)					
The missing values can be calculated by using the fact that, in the Q matrix, any row sum should be 1.		Q matrix						P matrix					
	$x \setminus y$	1	2	3	4		Nº 1	$x \setminus y$	1	2	3	4	
	1	0.2	0.2	0.3	0.3	×0.4		1	0.08	0.08	0.12	0.12	
	2	0.1	0.4	0.2	0.3	×0	$\xrightarrow{3}$	2	0.03	0.12	0.06	0.09	
	3	0.3	0.1	0.1	0.5	×0.2	\rightarrow	3	0.06	0.02	0.02	0.10	
	4	0.1	0.1	0.7	0.1	×0.	\rightarrow	4	0.01	0.01	0.07	0.01	
									Σ	Σ	Σ	Σ	
									¥	q	¥	¥	
									[0.18	0.23	0.27	0.32	