ECS 452: In-Class Exercise \# 6 Sol

Instructions

1. Separate into groups of no more than three students each. The group cannot be the same as any of your former groups. Only one submission is needed for each group. 2. [ENRE] Explanation is not required for this exercise
2. Do not panic.

Date: 4 / 2 / 2020

Name	ID ${ }_{\text {dana }{ }_{\text {dipit }}}$		
Prapun	5	5	5

1. Consider a DMC whose samples of input and output are provided below

There are 15 samples (pairs of (x, y) values) here.

Estimate the following quantities:
a. \mathcal{X}

Channel input alphabet
$=$ support of $X=\{0,1\}$
b. \mathcal{Y}

Channel output alphabet
$=$ support of $Y=\{0,1\}$
c. $P[X=0]=\frac{9}{15}=\frac{3}{5}=0.6$

Among the 15 samples, there are 9
samples with $x=0$.
d. $\quad p_{Y}(0) \equiv P[Y=0]=\frac{10}{15}=\frac{2}{3} \approx 0.6667$

Among the 15 samples, there are 10 samples with $y=0$.
e. $\underline{\mathbf{p}}=[p(0) p(1)]=\left[\begin{array}{ll}\frac{3}{5} & \frac{2}{5}\end{array}\right]=\left[\begin{array}{ll}0.6 & 0.4\end{array}\right]$

$$
p(1)=1-p(0)=1-\frac{3}{5}=\frac{2}{5}
$$

f. $\underline{\mathbf{q}}=\left[\begin{array}{ll}q(0) & q(1)\end{array}\right]=\left[\begin{array}{ll}\frac{2}{3} & \frac{1}{3}\end{array}\right] \approx$
[0.6667 0.3333]

$$
q(1)=1-q(0)=1-\frac{2}{3}=\frac{1}{3}
$$

g. $P[Y=0 \mid X=0]=\frac{7}{9} \approx 0.7778$

Among the 9 samples with $x=0$, there are 7 samples with $y=0$.
h. $\quad p_{Y \mid X}(1 \mid 0)$
$=P[Y=1 \mid X=0]=1-P[Y=0 \mid X=0]$
$=1-\frac{7}{9}=\frac{2}{9} \approx 0.2222$
i. $\quad Q(0 \mid 1)=P[Y=0 \mid X=1]=\frac{3}{6}=\frac{1}{2}=0.5$

Among the 15 samples, there are $15-$
$9=6$ samples with $x=1$.
Among the 6 samples with $x=1$, there are 3 samples with $y=0$.

j. Matrix \mathbf{Q}

Note that the Q matrix gives the conditional probabilities $P[Y=y \mid X=x]$. From earlier parts, we have three of such probabilities. The remaining one is

$$
P[Y=1 \mid X=1]=1-P[Y=0 \mid X=1]=1-\frac{1}{2}=\frac{1}{2}=0.5
$$

Therefore,
$\left.\mathbf{Q}=\begin{array}{c}x \backslash y \\ 0 \\ 1\end{array} \begin{array}{cc}0 & 1 \\ 7 / 9 & 2 / 9 \\ 1 / 2 & 1 / 2\end{array}\right] \approx \begin{array}{ccc}x \backslash y \\ 0 \\ 1\end{array} \quad\left[\begin{array}{cc}0 & 1 \\ 0.7778 & 0.2222 \\ 0.5 & 0.5\end{array}\right]$
k. $P[X=0, Y=0]=\frac{7}{15} \approx 0.4667$

Among the 15 samples, there are 7
samples with $x=0$ and $y=0$.

