# Digital Circuits ECS 371 

## Dr. Prapun Suksompong

 prapun@siit.tu.ac.thLecture 4-5
Office Hours:
BKD 3601-7
Monday 1:30-3:30
Tuesday 10:30-11:30

## Problem Set 1

- The questions are assigned from the following textbook:
- Thomas L. Floyd, Digital Fundamentals, $10^{\text {th }}$ Edition, Pearson Education International (2009).
- Only TWO of the problems will be graded. Of course, you do not know which problems will be selected; so you should work on all of them.
- Late submission will not be accepted.
- Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.


## Problem Set 1

- Chapter 2

$$
6,9,13,19,20,22,25,28
$$

- Chapter 3

$$
6,8,16,20,23
$$

- Due date: June 24, 2009 (Thursday)
- Please submit your HW to the instructor 3 minutes BEFORE your class starts.
- Earlier submission is possible. There are two HW boxes in the EC department ( $6^{\text {th }}$ floor) for ECS 371. (One for CS. Another one for IT.)


## Review

- Convert the following decimal numbers to binary:
(a) +29
(b) +85
- Express the following decimal numbers in binary as an 8-bit sign-magnitude number:
(a) +29
(b) -85
- Express the following decimal numbers as an 8 -bit number in the 1's complement form:
(a) +29
(b) -85
- Express the following decimal numbers as an 8-bit number in the 2's complement form:
(a) +29
(b) -85


## Logic Gates



Note: Active states are shown in yellow.

## Boolean Algebra

- The mathematics of logic circuits.
- The algebra of two values.
- Usually taken to be 0 and 1 .
- Developed in 1854 by George Boole in his book An Investigation of
 the Laws of Thought.
- Provide a concise way to express the operation of a logic circuit formed by a combination of logic gates.


## C. E. Shannon (1916-2001)

- 1938 MIT master's thesis: A Symbolic Analysis of Relay and Switching Circuits
- Insight:The binary nature of Boolean logic was analogous to the ones and zeros used by digital circuits.
- The thesis became the foundation of practical digital circuit design.
- The first known use of the term bit to refer to a "binary digit."
- Possibly the most important, and also the most famous, master's thesis of the century.
- It was simple, elegant, and important.


## C. E. Shannon (con't)

- 1948: A Mathematical Theory of Communication
- Create the architecture and concepts governing digital communication.
- Invent Information Theory: Simultaneously founded the subject, introduced all of the major concepts, and stated and proved all the fundamental theorems.

The science of information theory tackles the following questions [Berger]

1. What is information, i.e., how do we measure it quantitatively?
2. What factors limit the reliability with which information generated at one point can be reproduced at another, and what are the resulting limits?
3. How should communication systems be designed in order to achieve or at least to approach these limits?
