Digital Circuits ECS 371

Dr. Prapun Suksompong

prapun@siit.tu.ac.th
Lecture 2-3-4
Office Hours:
BKD 3601-7
Monday 1:30-3:30
Tuesday 10:30-11:30

Binary Counting

A binary counting sequence for numbers from zero to fifteen is shown.

Notice the pattern of zeros and ones in each column.
Digital counters frequently have this same pattern of digits:

Binary Addition

The rules for binary addition are

$$
\begin{array}{ll}
0+0=0 & \text { Sum }=0, \text { carry }=0 \\
0+1=1 & \text { Sum }=1, \text { carry }=0 \\
1+0=1 & \text { Sum }=1 \text {, carry }=0 \\
1+1=10 & \text { Sum }=0, \text { carry }=1
\end{array}
$$

When an input carry $=1$ due to a previous result, the rules are

$$
\begin{array}{ll}
1+0+0=01 & \text { Sum }=1, \text { carry }=0 \\
1+0+1=10 & \text { Sum }=0, \text { carry }=1 \\
1+1+0=10 & \text { Sum }=0, \text { carry }=1 \\
1+1+1=11 & \text { Sum }=1, \text { carry }=1
\end{array}
$$

Truth Table

- Truth table: A table showing the inputs and corresponding output(s) of a logic circuit.

Inputs		Outputs	
A	B	$C_{\text {out }}$	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Inputs			Outputs	
A	B	C_{n}	$C_{\text {ot }}$	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Binary Addition (Con’t)

- Example: Add the binary numbers 0111 and 1101 and show the equivalent decimal addition.

Representation of Negative Numbers

- Digital Logic represents numbers as n-bit binary numbers, with fixed n.
- Some important operations:

1. 1 's complement: Change all 1 s to 0 s and all 0 s to 1 s .
2. 2 's complement: Add 1 to the LSB of the 1 's complement.

- If the addition produces a result that requires more than n digits, we throw away the extra $\operatorname{digit}(\mathrm{s})$.
- If a number D is complemented twice, the result is D.
- An alternative method of finding the 2's complement: Change all bits to the left of the least significant 1 .

1. Start at the right with the LSB and write the bits as they are up to and including the first 1.
2. Take the 1's complements of the remaining bits.

Example

> The 1 's complement of 11001010 is $$
00110101 \text { (1's complement) }
$$

To form the 2's complement, add 1: $+1$

00110110 (2's complement)

Implementation

1's Complement

Signed Binary Number

- Fix the number of bits.
- A signed binary number consists of both sign and magnitude information.
- The sign indicates whether a number is positive or negative
- In a signed binary number, the left-most bit (MSB) is the sign bit.
- 0 indicates a positive number, and 1 indicates a negative number
- The magnitude is the value of the number.
- There are three forms in which signed integer (whole) numbers can be represented in binary:

1. sign-magnitude,
2. l's complement,
3. and 2's complement.

- Of these, the 2's complement is the most important

Signed Binary Number

(1) Sign-Magnitude Form

- The magnitude bits are in true (uncomplemented) binary for both positive and negative numbers.
- Negate a number by changing its sign.
(2) 1's Complement Form
- A negative number is the 1 's complement of the corresponding positive number.
There are two possible representations of zero, " +0 " and "- 0 ", but both have the same value.

000	0	0	0
001	1	1	1
010	2	2	2
011	3	3	3
100	-0	-3	-4
101	-1	-2	-3
110	-2	-1	-2
111	-3	-0	-1

Signed Binary Number (2)

(3) 2's Complement Form

- A negative number is the 2's complement of the corresponding positive number.
- Has only one representation of zero.
- Zero is considered positive because its sign bit is 0 .
- The weight of the sign bit is given a negative value.
- Decimal values are determined by summing the weights in all bit positions where there are 1 s and ignoring those positions where there are zeros.

	${ }^{{ }^{2} p_{n}!u_{\delta}}{ }_{T} W \text {-ufits }$		0 0 0 0 0 0 0 n in
000	0	0	0
001	1	1	1
010	2	2	2
011	3	3	3
100	-0	-3	-4
101	-1	-2	-3
110	-2	-1	-2
111	-3	-0	-1

Example

The positive number 58 is written using 8 -bits as 00111010 (true form).
Sign bit

The negative number -58 is written as:

An easy way to read a signed number that uses this notation is to assign the sign bit a negative weight (-128 for an 8 -bit number). Then add the column weights for the 1 's.

$$
\begin{array}{cccccccc}
\text { Weights: }-128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 . \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
-128 & +64 & & & +4 & +2
\end{array}=-58
$$

2's Complement (con't)

- The number of different combinations of n bits is 2^{n}
- For n bit 2's complement signed numbers, the range is

$$
-\left(2^{n-1}\right) \text { to }+\left(2^{n-1}-1\right)
$$

- Has one extra negative number
- This number does not have a positive counterpart.
- To convert n-bit 2's complement number into m-bit one:
- If $m>n$, append $m-n$ copies of the sign bit.
- This is called sign extension.
- If $m<n$, discard $n-m$ leftmost bits
- The result is valid only if all of the discarded bits are the same as the sign bit of the result.

Logic Gates

Note: Active states are shown in yellow.

NOT Gate

- The inverter (NOT circuit) performs the operation called inversion or complementation.
- Complement :The inverse or opposite of a number.
- LOW is the complement of HIGH
- 0 is the complement of 1 .

- The negation indicator is a "bubble" (o) that indicates inversion or complementation
- Later, we will "play" with this bubble.

AND Gate

- Logic Expressions: The AND operation is usually shown with a dot between the variables but it may be implied (no dot).
- $X=A \cdot B$ or $X=A B$.

Inputs		Output
A	B	X
0	0	0
0	1	0
1	0	0
1	1	1

AND Gate (Con't)

OR Gate

- OR gate produces a HIGH output when one or more inputs are HIGH.

- Expression: Use plus sign $(+)$ between the variables.
- $X=A+B$.

Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

OR Gate (con't)

Application

$$
\begin{aligned}
\text { HIGH } & =\text { Open } \\
\text { LOW } & =\text { Closed }
\end{aligned}
$$

- A simplified intrusion detection system using an OR gate.
- The sensors are magnetic switches that produce a HIGH output
 when open and a LOW output when closed.
- As long as the windows and the T door are secured, the switches are closed and all three of the OR gate inputs are LOW.
- When one of the windows or the door is opened, a HIGH is produced on that input to the OR gate and the gate output goes HIGH.

It then activates and latches an alarm circuit to warn of the intrusion.

NAND Gate

- NAND gate produces a LOW output only when all the inputs are HIGH.

A and B are both HIGH during these four time intervals. Therefore X is LOW.

Negative-OR

NAND Gate (Con't)

- The NAND gate is a popular logic element because it can be used as a universal gate.
- NAND gates can be used in combination to perform the AND, OR, and inverter operations.
- In fact, all other basic gates can be constructed from NAND gates.
- Ex. Inverter

- We will revisit this property.
- The NAND operation is shown with a dot between the variables and an overbar covering them.
- $X=\overline{A \cdot B}$ (Alternatively, $X=\overline{A B}$.)

NOR Gate

- NOR gate's output is LOW when one or more of the inputs are HIGH.

Inputs		Output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

- Can also be used as a universal gate.

XOR

- Exclusive-OR (XOR) gate produces a HIGH output only when its two inputs are at opposite levels.

Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	0

- XOR and XNOR gates are formed by a combination of other gates already discussed.
- Because of their fundamental B importance in many applications, these gates are often treated as basic logic elements with their own unique symbols.

XOR and XNOR

- Exclusive-NOR gate: A logic gate that produces a LOW only when the two inputs are at opposite levels.

Inputs		Output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	1

Logic Gates \& Application

Inverter

Note: Active states are shown in yellow.

Inputs		Outputs	
A	B	$C_{\text {out }}$	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Fixed Function Logic

- Typical dual in-line (DIP) and small-outline (SOIC) packages showing pin numbers and basic dimensions.

(a) 14-pin dual in-line package (DIP) for feedthrough mounting
(b) 14-pin small outline package (SOIC) for surface mounting

Pin configuration diagrams

V_{CC}

'11
V_{CC}

'20

V_{CC}

