Digital Circuits

ECS 371

Dr. Prapun Suksompong

prapun@siit.tu.ac.th

Lecture 1

Office Hours:

Monday 1:30-3:30

Tuesday 10:30-11:30

Course Organization

Course Web Site:

http://www.siit.tu.ac.th/prapun/ecs371/

• Lectures:

CS	IT
Room: BKD3216	Room: BKD3215
Time: 1. Mon 10:40-12:00 2. Thu 09:00-10:20	Time: 1. Tue 13:00-14:20 2. Thu 13:00-14:20

Fundamenta

• Textbook:

- Thomas L. Floyd, <u>Digital Fundamentals</u>, 10th Edition, Pearson Education International (2009).
 - Companion Site: http://wps.prenhall.com/chet-floyd-digitalfun-10/
- J. Wakerly, Digital Design: Principles & Practices, Prentice Hall, 3nd Edition (2001).

Course Web Site

- Please check the course Web site regularly.
- Announcement
- References
- Handouts/Slides
- Calendar
 - Exams
 - HW due dates

ECS371.PRAPUN.COM

Grading System

Coursework will be weighted as follows:

Homework	10%
Class Participation and Quizzes	20%
Midterm Examination •13:30 - 16:30 on Jul 30, 2009	30%
Final Examination (comprehensive) •13:30 - 16:30 on Oct 1, 2009	40%

- Mark your calendars now!
- Late HW submission will be rejected.
- All quizzes and exams will be closed book. Calculators are **not** allowed.

Policy

- We will start the class on time and will finish on time.
 - 10 min late = absence.
 - Raise your hand and tell me immediately if I go over the time limit.
- Mobile phones *must* be set to the silent mode.
- We will have some pop quizzes (without prior warning or announcement).
- Cheating will not be tolerated.
- New policy: Copying homework/quiz = cheating
 - First time cheater receives zero on that assignment.
 - Second time cheater receives zero on all quizzes and/or HWs.

Policy (con't)

- Attendance and pop quizzes will be taken/given irregularly and randomly.
- Class participation is highly encouraged.
 - It does not mean simply sitting quietly in the class.
 - Feel free to stop me when I talk too fast or too slow.
 - Ask question! Don't be shy!
 - If you don't understand something, there is a good chance that your friends do not understand as well.
- You may be called upon to complete exercises in front of the class at any time.
 - Emphasis on EFFORT and METHODOLOGY, not right or wrong answers.
- I will surely make some mistakes in lectures / HWs / exams
 - Some amount of class participation scores will be reserved to reward the first student who inform me about each of these mistakes.

More Policy

- Get some help!
 - Do not wait until the final exam time or after the grade is out
- Office Hours (BKD-3601)
 - Monday 1:30-3:30
 - Tuesday 10:30-11:30
 - Appointment can be made if needed.
 - Feel free to come to my office and chat!
- You may also ask question after class.
- Points on quizzes/exams are generally based on your entire solution, not your final answer.
 - You can get full credit even when you have the wrong final answer.
 - You may get zero even when you write down a right answer if you do not justify your answer.

Warning

- This class can be difficult if you don't keep up with the lectures
- I will evaluate your understanding of the course regularly through
 - In class problems where you are asked to answer short questions in front of the class
 - Quizzes
 - Exams

Course Outline

- 1. Introduction to digital circuits, number systems, signed numbers, arithmetic operations
- 2. Logic gates and Boolean algebra (DeMorgan's theorem, truth tables)
- 3. Combinational logic circuits (SOP and POS forms)
- 4. Combinational logic circuits (Karnaugh maps)
- 5. Arithmetic circuits (adders, subtractors, multipliers)
- 6. MSI logic circuits (encoders, decoders, 7-segment LED, multiplexers, comparators)
- 7. MIDTERM: 13:30 16:30 on Jul 30, 2009
- 8. Sequential logic circuits (latches, flip-flop)
- 9. Sequential logic circuits (analysis and design)
- 10. Sequential logic circuits (counters, shift registers, digital filters)
- 11. Memory and storage
- 12. Programmable logic devices (PLD, FPGA)
- 13. Hardware description language (HDL)
- 14. Integrated Circuit Technologies
- 15. FINAL: 13:30 16:30 on Oct 1, 2009

Tips

- This course may seem to be simple at the beginning.
 - We need to review some basic concepts.
 - Use this stage to learn new terminology and my teaching style
- It will get harder.
 - The materials build up.
- Make sure that, before you come to the new lecture, you understand the material presented during the earlier lectures.

Life after ECS 371

Credits

- Prof. Thomas L. Floyd (Book author)
- Prof. Adam W. Bojanczyk (Cornell)
- Dr. Wesley E. Swartz (Cornell)
- Dr. Douglas Long (Cornell)
- Dr. Itthisek Nilkhamhang (SIIT)

Reading Assignment

Chapter 1 and Chapter 2 (from Floyd)

- 1 Introductory Concept
 - 1-1 Digital and Analog Quantities
 - 1-2 Binary Digits, Logic Levels, and Digital Waveforms
- 2 Number Systems, Operations, and Codes
 - 2-1 Decimal Numbers
 - 2-2 Binary Numbers
 - 2-3 Decimal-to-Binary Conversion
 - 2-4 Binary Arithmetic
 - 2-5 1's and 2's Complements of Binary Numbers

Digital and Analog Quantities

- An analog quantity is one having continuous values.
- A digital quantity is one having a discrete set of values
- The real world is analog!
 - Most things that can be measured quantitatively occur in nature in analog form.
 - Examples: air temperature, pressure, distance, sound.

Interfacing between analog and digital is important.

- Digitization
 - 1. **Sampling**: Discretize the time
 - Get sampled values of the analog signal.
 - 2. Quantization: Discretize quantity values
 - Convert each sampled value to a binary code.

Analog and Digital Systems

- Many systems use a mix of analog and digital electronics to take advantage of each technology.
- A typical CD player accepts digital data from the CD drive and converts it to an analog signal for amplification.

Digital vs. Analog Data Representation

- Problems with analog?
 - Hard to measure an exact value.
 - Noise (or interference) may disrupt signal.
 - Signal is hard to maintain across large distances.
- Digital systems can process, store, and transmit data more efficiently but can only assign discrete values to each point.
 - Noise (unwanted voltage fluctuations) does not affect digital data nearly as much as it does analog signals.
 - Can use error-correcting codes.
 - Can use compression.
- Analog systems can generally handle higher power than digital systems.
- The real world is analog!
 - Even digital systems are really analog deep down.

What is ECS 371?

- We study digital logic circuits.
- In particular, this course introduces procedures for the **analysis** and **design** of digital logic circuits.
- Two important ideas that you should keep in mind:
 - Abstraction
 - Hierarchy

Applications of Logic Design

- Conventional computer design
 - CPUs, busses, peripherals
- The digital world is much bigger than just PCs!
- Networking and communications
 - Phones, modems, routers
- Embedded products
 - Cars (ABS, carburetion, light controls)
 - Toys (motion and talking)
 - Appliances (timing and sensing)
 - Entertainment devices (games)
- Scientific equipment
 - Testing, sensing, reporting

Binary System

- **Digit**: A symbol used to express a quantity.
- **Digital**: Related to digits or discrete quantities; having a set of discrete values as opposed to continuous value.
- **Digital electronics** involves circuits and systems in which there are only *two* possible states represented by *two* digits.
- The two-state number system is called **binary system**
 - Its two digits are 0 and 1. Each of the two digits is called a **bit**, which is a contraction of the words **bi**nary digit.
- **Positive Logic System**: 0 and 1 are represented by two different voltage levels.
 - 1 is represented by the higher voltage, which we will refer to as a **HIGH**.
 - 0 is represented by the lower voltage level, which we will refer to as a LOW.

Digital Abstraction

- Q: So, what does "digital" mean anyway?
- A: For now, "digital" means a binary system
 - Only 2 recognized values
 - Low or High
 - 0 or 1
 - Negated or asserted
 - False or True
 - Off or On

Logic Level

 Information in circuits are represented by voltage values.

• The voltages used to represent a 1 and a 0 are called **logic levels**.

- In a practical digital circuit a HIGH can be any voltage between a specified minimum value and a specified maximum value.
- Likewise, a LOW can be any voltage between a specified minimum and a specified maximum.
- There can be no overlap between the accepted range of HIGH levels and the accepted range of LOW levels.

Digital Waveforms

- **Digital waveforms** consist of voltage levels that are changing back and forth between the HIGH and LOW levels or states.
- These waveforms represent sequences of bits which contains binary information.
- Each bit in a sequence occupies a defined time interval called a **bit time**.

• A group of several bits can be used as a piece of binary information, such as a number or a letter.

Clock Waveform

- In digital systems, all waveforms are synchronized with a clock.
 - The clock waveform itself does not carry information.
- The clock is a periodic waveform in which each interval between pulses (the period) equals the time for one bit.

• Notice that change in level of waveform *A* occurs at the leading edge of the clock waveform.

Timing Diagram

• A **timing diagram** is a graph of digital waveforms showing the actual time relationship of two or more waveforms and how each waveform changes in relation to the others.

- By looking at a timing diagram, you can determine
 - the states (HIGH or LOW) of all the waveforms at any specified point in time and
 - the exact time that a waveform changes state relative to the other waveforms.

Basic Logical Operation

- What can you do with 0 and 1?
- Basic Building Blocks:

• The NOT operation

The NOT operation changes one logic level to the opposite logic level.

Basic Logical Operation

The AND operation

Produce a HIGH output only when all the inputs are HIGH.

The OR operation

Produce a HIGH output when one or more inputs are HIGH.

Summary: Truth Table

X	Y	NOT X	XANDY	X OR Y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

Decimal Number System

- The decimal system with its ten digits is a **base-ten** system
- You use decimal numbers every day.
- Each of the ten digits (symbols), 0 through 9, represents a certain quantity.
- The position of each digit in a **weighted** number system is assigned a weight based on the **base** or **radix** of the system.
 - The radix of decimal numbers is ten.
 - The weights for whole numbers are positive powers of ten that increase from right to left, beginning with $10^0 = 1$:

Decimal Number System

• Example: Express the decimal number 47 as a sum of the *values* of each digit.

$$47 = (4 \times 10^{1}) + (7 \times 10^{0}) = 40 + 7$$

• Example: What weight does the digit 7 have in each of the following numbers?

(a) 1370

(b) 6725

(c) 7051

• Example: Express each of the following decimal numbers as a sum of the products obtained by multiplying each digit by its appropriate weight

- (a) $51 = (5 \times 10) + (1 \times 1)$
- (b) $137 = (1 \times 100) + (3 \times 10) + (7 \times 1)$

Binary Number System

- The binary system with its two digits is a base-two system.
 - The two binary digits (bits) are 1 and 0.
- The position of a 1 or 0 in a binary number indicates its weight or value within the number.
- The weight structure of a binary number is

$$2^{n-1} \dots 2^3 \ 2^2 \ 2^1 \ 2^0$$

- The weights increase from right to left by a power of two for each bit.
- The right-most bit is the LSB (least significant bit) in a binary whole number and has a weight of $2^0 = 1$.
- The left-most bit is the **MSB** (most significant bit); its weight depends on the size of the binary number.

Binary Number System

• Example: Determine the weight of the 1 in the binary number 10000.

2 ⁰	2 ¹	22	2 ³	24	2 ⁵	26	27	28
1	2	4	8	16	32	64	128	256

Binary-to-Decimal Conversion

- Add the column values of all of the bits that are 1 and discarding all of the bits that are 0.
- Example: Convert the binary whole number 1101101 to decimal.

• Example: What is the largest decimal number that can be represented in binary with seven bits?

Decimal-to-Binary Conversion

- Two methods
 - 1. Sum-of-Weights Method
 - 2. Repeated Division-by-2 Method
- **Sum-of-Weights Method**: determine the set of binary weights whose sum is equal to the decimal number.
- Example: Convert the following decimal numbers to binary:
 - 1. 12
 - 2. 25
 - 3. 58

2 ⁰	2 ¹	2^2	2^3	2^4	2^5	26	27	28
1	2	4	8	16	32	64	128	256

Decimal-to-Binary Conversion

- Repeated Division-by-2 Method:
 - The remainders form the binary number.
 - The first remainder to be produced is the LSB.
- Example: Convert the following decimal number to binary.

(a) 12 (b) 45

Binary Counting

A binary counting sequence for numbers from zero to fifteen is shown.

Notice the pattern of zeros and ones in each column.

Digital counters frequently have this same pattern of digits:

0	0000
1	0001
2	0010
3	0 0 1 1
4	0100
5	0 1 0 1
6 7	0 1 1 0
7	0 1 1 1
8	1000
9	1001
10	1010
11	1011
12	1 1 0 0
13	1 1 0 1
14	1 1 1 0
15	1 1 1 1