Digital Circuits ECS 371

Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 2

Office Hours: BKD 3601-7 Monday 1:30-3:30 Tuesday 10:30-11:30

ECS371.PRAPUN.COM

Announcement

- The fact that I will end the class on time does NOT mean that I will leave the room immediately after the lecture.
 - I will stay to answer questions.
- Reading Assignment:
 - Chapter 1: 1-1, 1-2
 - Chapter 2: 2-1, 2-2, 2-3
 - Skip 2.4
 - Chapter 2: 2-5, 2-6
 - Skip 2-7 to 2-12
 - Chapter 3: ALL

Binary Counting

A binary counting sequence for numbers from zero to fifteen is shown.

Notice the pattern of zeros and ones in each column.

Digital counters frequently have this same pattern of digits:

Binary Addition

The rules for binary addition are

0 + 0 = 0	Sum = 0, $carry = 0$
0 + 1 = 1	Sum = 1, $carry = 0$
1 + 0 = 1	Sum = 1, $carry = 0$
1 + 1 = 10	Sum = 0, $carry = 1$

When an input carry = 1 due to a previous result, the rules are

1 + 0 + 0 = 01Sum = 1, carry = 01 + 0 + 1 = 10Sum = 0, carry = 11 + 1 + 0 = 10Sum = 0, carry = 11 + 1 + 1 = 11Sum = 1, carry = 1

Representation of Negative Numbers

- Digital Logic represents numbers as *n*-bit binary numbers, with fixed *n*.
- Some important operations:
 - 1. **1's complement**: Change all 1s to 0s and all 0s to 1s.
 - 2. **2's complement**: Add 1 to the LSB of the 1's complement.
 - If the addition produces a result that requires more than *n* digits, we throw away the extra digit(s).
 - If a number *D* is complemented twice, the result is *D*.
- An alternative method of finding the 2's complement: Change all bits to the left of the least significant 1.
 - 1. Start at the right with the LSB and write the bits as they are up to and including the first 1.
 - 2. Take the 1's complements of the remaining bits.

Signed Binary Number

- A signed binary number consists of both sign and magnitude information.
 - The sign indicates whether a number is positive or negative
 - In a signed binary number, the left-most bit (MSB) is the **sign bit**.
 - 0 indicates a positive number, and
 1 indicates a negative number
 - The magnitude is the value of the number.
- There are three forms in which signed integer (whole) numbers can be represented in binary:
 - 1. sign-magnitude,
 - 2. l's complement,
 - 3. and 2's complement.
- Of these, the 2's complement is the most important

Signed Binary Number

- (1) Sign-Magnitude Form
- The magnitude bits are in true (uncomplemented) binary for both positive and negative numbers.
- Negate a number by changing its sign.
- (2) 1's Complement Form
- A negative number is the 1's complement of the corresponding positive number.

There are two possible representations of zero, "+0" and "-0", but both have the same value.

	Sign-Magnitude	1's Complement	2's Complement
000	0	0	0
001	1	1	1
010	2	2	2
011	3	3	3
100	-0	-3	-4
101	-1	-2	-3
110	-2	- 1	-2
111	-3	-0	- 1

Signed Binary Number (2)

- (3) 2's Complement Form
- A negative number is the 2's complement of the corresponding positive number.
- The weight of the sign bit is given a negative value.
- Decimal values are determined by summing the weights in all bit positions where there are 1s and ignoring those positions where there are zeros.
- Has only one representation of zero.
- Zero is considered positive because its sign bit is 0.

	Sign-Magnitude	1's Complement	2's Complement
000	0	0	0
001	1	1	1
010	2	2	2
011	3	3	3
100	-0	-3	-4
101	- 1	-2	-3
110	-2	- 1	-2
111	-3	-0	- 1

2's Complement Representation (con't)

- The number of different combinations of n bits is 2^n
- For *n* bit 2's complement signed numbers, the range is

$$-(2^{n-1})$$
 to $+(2^{n-1}-1)$

- Has one extra negative number
 - This number does not have a positive counterpart.
- To convert *n*-bit 2's complement number into *m*-bit one:
 - If m > n, append m-n copies of the sign bit.
 - This is called *sign extension*.
 - If m < n, discard n-m leftmost bits
 - The result is valid only if all of the discarded bits are the same as the sign bit of the result.