ECS 332: In-Class Exercise # 9 - Sol

Instructions

- 1. Separate into groups of no more than three students each. The group cannot be the same as any of your former groups.
- Explanation is not required for this exercise [ENRE]
- 3. **Do not panic.**

Date: <u>19/09</u> /2019			
Name	II	ID (last 3 digits)	
Prapun	5	5	5

1. For each of the following signal g(t), find its (normalized) average power $P_g \equiv \langle |g(t)|^2 \rangle$.

Do not use any approximation.	$g(t) \qquad P_g = \langle g(t) ^2 \rangle$		
g(t)	Linear combination of complex exponential functions [4.23] $\sum_{k} c_k e^{j2\pi f_k t}$ where the f_k are distinct $\sum_{k} c_k ^2$		
$g(t) = 10e^{j20\pi t}$	Linear combination of sinusoids [4.28] $\sum_{k} A_k \cos(2\pi f_k t + \phi_k)$ where the f_k are positive and distinct $\frac{1}{2} \sum_{k} A_k ^2$ $P_g = 10^2 = 100.$		
$g(t) = 10e^{j20\pi t} + 5e^{j40\pi t}$	First, we check that the freq. of the two terms are different which is the case here. Therefore, $P_g = 10^2 + 5^2 = 125$.		
$g(t) = \left(10e^{j20\pi t} + 5e^{j40\pi t}\right)^2$	$g(t) = (10e^{j20\pi t})^{2} + 2(10e^{j20\pi t})(5e^{j40\pi t}) + (5e^{j40\pi t})^{2}$ = 100e^{j40\pi t} + 100e^{j60\pi t} + 25e^{j80\pi t}. These terms have different freq. Therefore, $P_{g} = 100^{2} + 100^{2} + 25^{2} = 20625.$		
$g(t) = 4\cos(4t + 4^\circ)$	For sinusoidal signals, don't forget that we have an additional factor of $\frac{1}{2}$. $P_g = \frac{1}{2} \times 4^2 = 8.$		
$g(t) = 5\cos(3t+15^\circ) + 12\cos(4t+105^\circ)$	First, we check that the freq. of the two terms are different and positive which is the case here. Therefore, $P_g = \frac{1}{2} \times 5^2 + \frac{1}{2} \times 12^2 = 84.5.$		
$g(t) = 5\cos(3t + 15^{\circ}) + 12\cos(3t + 105^{\circ})$	The freq. of the two terms are the same. Therefore, we must combine them first: $g(t) \Leftrightarrow 5 \angle 15^\circ + 12 \angle 105^\circ = 13 \pounds 82.38^\circ$ $\Leftrightarrow 13\cos(3t + 82.38^\circ).$ Therefore, $P_g = \frac{1}{2} \times 13^2 = 84.5.$ Note that we don't need this ang		

We only need the magnitude for our power calculation. Knowing that the angle difference

between the two terms is 90°, we can use Pythagoras' theorem: $\sqrt{5^2 + 12^2} = 13$.