ECS 332: In-Class Exercise \# 9 - Sol

Instructions

1. Separate into groups of no more than three students each

The group cannot be the same as any of your former groups.
2. Explanation is not required for this exercise [ENRE]
3. Do not panic.

Date: $\underline{1}$ / $\underline{0} \underline{9} / 2019$

Name	ID		
Prapun	5	5	5

1. For each of the following signal $g(t)$, find its (normalized) average power $\left.\left.P_{g} \equiv\langle | g(t)\right|^{2}\right\rangle$.

Do not use any approximation.

Do not use any approximation.	$g(t) \quad P_{g}=\left.\langle \| g(t)\right\|^{2}$
	Linear combination of $\quad \sum c_{k} e^{j 2 \pi f_{k} t} \quad \sum\left\|c_{k}\right\|^{2}$
$g(t)$	complex exponential functions [4.23]where the f_{k} are distinct $\sum_{k} c_{k}$
$g(t)=10 e^{j 20 \pi t}$	$\substack{\text { Linear combination of } \\ \text { sinusoids } \\ \text { 14.28] }}$ $\sum_{k}^{k} A_{k} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$ $\frac{1}{2} \sum_{k}\left\|A_{k}\right\|^{2}$ where the f_{k} are positive and distinct $\|$$P_{g}=10^{2}=100$
$g(t)=10 e^{j 20 \pi t}+5 e^{j 40 \pi t}$	First, we check that the freq. of the two terms are different which is the case here. Therefore, $P_{g}=10^{2}+5^{2}=125$
$g(t)=\left(10 e^{j 20 \pi t}+5 e^{j 40 \pi t}\right)^{2}$	$\begin{aligned} g(t) & =\left(10 e^{j 20 \pi t}\right)^{2}+2\left(10 e^{j 20 \pi t}\right)\left(5 e^{j 40 \pi t}\right)+\left(5 e^{j 40 \pi t}\right)^{2} \\ & =100 e^{j 40 \pi t}+100 e^{j 60 \pi t}+25 e^{j 80 \pi t} . \end{aligned}$ These terms have different freq. Therefore, $P_{g}=100^{2}+100^{2}+25^{2}=20625$
$g(t)=4 \cos \left(4 t+4^{\circ}\right)$	For sinusoidal signals, don't forget that we have an additional factor of $\frac{1}{2}$. $P_{g}=\frac{1}{2} \times 4^{2}=8$
$g(t)=5 \cos \left(3 t+15^{\circ}\right)+12 \cos \left(4 t+105^{\circ}\right)$	First, we check that the freq. of the two terms are different and positive which is the case here. Therefore, $P_{g}=\frac{1}{2} \times 5^{2}+\frac{1}{2} \times 12^{2}=84.5$
$g(t)=5 \cos \left(3 t+15^{\circ}\right)+12 \cos \left(3 t+105^{\circ}\right)$	The freq. of the two terms are the same. Therefore, we must combine them first: $\begin{aligned} g(t) & \Leftrightarrow 5 \angle 15^{\circ}+12 \angle 105^{\circ}=13<82.38^{\circ} \\ & \Leftrightarrow 13 \cos \left(3 t+82.38^{\circ}\right) . \end{aligned}$ Therefore, $P_{g}=\frac{1}{2} \times 13^{2}=84.5$.

