Instructions

- Separate into groups of no more than three students each. The group cannot be the same as any of your former groups.
- Explanation is not required for this exercise [ENRE]
- 3. **Do not panic.**

Date: $06/09/2019$				
Name	ID	ID (last 3 digits)		

1. Consider a modulator below.

Recall that, when $X(f) = m(t)A_1 \cos(2\pi f_c t)$, we know that

$$X(f) = \frac{A_1}{2}M(f - f_c) + \frac{A_1}{2}M(f + f_c).$$

Suppose $A_1 = 2$, $f_c = 40$ Hz, and the Fourier transform of the message is as plotted below. Here, $A_1 = 2$ and $f_c = 40$. Therefore,

Plot X(f) in the corresponding space below.

2. Consider two signals m(t) and g(t).

The magnitude plots of their Fourier transforms are shown below.

In the time domain, suppose $g(t) = c_1 m(t) \cos(c_2 t)$ for some positive constants c_1 and c_2 . Find the values of the constants c_1 and c_2 :

$$c_1 = \underline{1}, c_2 = \underline{24\pi}$$

From $g(t) = c_1 m(t) \cos(c_2 t) = c_1 m(t) \cos\left(2\pi \frac{c_2}{2\pi} t\right)$, we know that $G(f) = \frac{c_1}{2} M\left(f - \frac{c_2}{2\pi}\right) + \frac{c_1}{2} M\left(f + \frac{c_2}{2\pi}\right)$. $\frac{c_1}{2} \times 2 = 1 \qquad 8 + \frac{c_2}{2\pi} = 20$

 $c_1 = 1$

 $c_2 = 24\pi$