Instructions

1. Separate into groups of no more than three students each.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Date: $21 / 08 / 2019$			
Name	ID		
Prapun	5	5	

1) $\mathrm{Plo}=\delta(t+2)-2 \delta(t+1)-2 \delta(t-1)$.

2) Evaluate the following integrals:
a) $\int_{1}^{7} \delta(t) d t=\int_{1}^{7} 1 \delta(t) d t=0$

$$
\left.\begin{array}{l}
A=[1,7] \\
c=0
\end{array}\right\} \Rightarrow c \notin A
$$

b) $\int_{1}^{7} \delta(t-3) d t=\int_{1}^{7} 1 \delta(t-3) d t=g(3)=1$

$$
\left.\begin{array}{l}
A=[1,7] \\
c=3
\end{array}\right\} \Rightarrow c \in A
$$

$$
g(t) \equiv 1
$$

c) $\int_{1}^{7} \cos \left(\frac{\pi}{2} t\right) \delta(t) d t=0$

$$
\left.\begin{array}{l}
A=[1,7] \\
c=0
\end{array}\right\} \Rightarrow c \notin A
$$

d) $\int_{1}^{7} \cos \left(\frac{\pi^{g}}{2} t\right) \delta(t-3) d t=\cos \left(\frac{\pi}{2} t\right) \quad \delta(3)=\cos \left(\frac{3 \pi}{2}\right)=0$

$$
\left.\begin{array}{l}
A=[1,7] \\
c=3
\end{array}\right\} \Rightarrow c \in A
$$

Extended sifting property:
$\int_{A} g(t) \delta(t-c) d t= \begin{cases}g(c), & c \in A, \\ 0, & c \notin A .\end{cases}$
$\left.\begin{array}{rl}A & =[1,7] \\ c & =0\end{array}\right\} \Rightarrow c \notin A$

$$
g(t)=\cos \left(\frac{\pi}{2} t\right)
$$

$\rho(t) \cos \left(\frac{\pi}{2} t\right) \quad \infty$
$\int_{-2 \notin A}+2 \int_{0}^{\infty} \delta(t+1) d t-2 \int_{0}^{\infty} \delta\left(t-1 \notin A \int_{-2(1)}^{\infty} \downarrow 1 \in A\right.$

$$
A=[0, \infty)
$$

$$
=0^{\swarrow^{J}+2 \notin A}+2(0)^{\swarrow-1 \notin A}-2(1)^{\swarrow} \swarrow 1 \in A
$$

$$
=-2
$$

f) (optional) $\int_{-\infty}^{\infty} \delta\left(t^{2}-2 t\right) d t$
come discuss with Dr. Prapun if you think you have found a way to solve this. A good start is to find the roots of $t^{2}-2 t$

$$
\longrightarrow t=0,2 \text {. }
$$

However, this is not enough. The answer will also depend on the slope of $t^{2}-2 t$ at $t=0,2$ as well.

In the optional question, we would like to calculate $\int_{-\infty}^{\infty} \delta(g(t)) d t$ where $g(t)=t^{2}-2 t$.
Here are some hints.
Let's look at the limiting approximation of $\delta(t)$. Consider a rectangular function centered at origin whose width is ε. To be a delta function, we need the area $=1$; therefore, the height must be $\frac{1}{\varepsilon}$. In the MATLAB plot below, we use $\varepsilon=0.1$. As expected, there is a "spike" at $t=0$.

Now, let's try to plot $\delta(g(t))$ where $g(t)=t^{2}-2 t$.

Note that there are two "spikes" at $t=0$ and $t=2$. This is expected because we know that the spikes will show up when the argument of $\delta(\cdot)$ is 0 . Here, $g(t)=t^{2}-2 t$ is zero at $t=0$ and $t=2$.

The area under the graph above approximates $\int_{-\infty}^{\infty} \delta(g(t)) d t$. This area is the sum of the areas under the two spikes. Note, however, that the area under each spike is not one anymore; the spikes seem to be narrower. How can we find their areas? (Furthermore, can we eliminate MATLAB from this calculation?)

