ECS 332: In-Class Exercise \# 16-Sol

Instructions

1. Separate into groups of no more than three students each. The group cannot be the same as any of your former groups after the midterm.
2. ENRE (Explanation is not required for this exercise.)
3. Do not panic.

Date: $\underline{0} \underline{1} / \underline{1} \underline{1} / 2019$			
Name	ID		
Prapun	5	5	5

1. In QAM system, the transmitted signal is of the form

$$
x_{\mathrm{QAM}}(t)=m_{1}(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)+m_{2}(t) \sqrt{2} \sin \left(2 \pi f_{c} t\right) .
$$

Here, we want to express $x_{\text {QAM }}(t)$ in the form

$$
x_{\mathrm{QAM}}(t)=\sqrt{2} E(t) \cos \left(2 \pi f_{c} t+\phi(t)\right),
$$

where $E(t) \geq 0$ and $\phi(t) \in\left(-180^{\circ}, 180^{\circ}\right]$.
This problem assumes the messages are piecewise constant. Their values during three time intervals are listed below. Find the values of $E(t)$ and $\phi(t)$ during the corresponding time intervals.

Intervals	$m_{1}(t)$	$m_{2}(t)$	$E(t)$	$\phi(t)$	$m_{1}-j m_{2}$
$0 \leq t<1$	-1	-1	$\sqrt{2}$	135°	$1+j=\sqrt{2} \angle 135^{\circ}$
$1 \leq t<2$	0	5	5	-90°	$-5 j=5 \angle-90^{\circ}$
$2 \leq t<3$	-3	4	5	-126.87°	$-3-4 j \approx 5 \angle-126.87^{\circ}$

2. Consider five plots below. The top one is the baseband message signal $m(t)$ that is used in the modulation to create an FM signal. Identify which plot is $x_{\mathrm{FM}}(t)$.

