ECS 332: In-Class Exercise # 16 - Sol

Instructions

- 1. Separate into groups of no more than three students each. The group cannot be the same as any of your former groups after the midterm.
- 2. ENRE (Explanation is not required for this exercise.)
- 3. Do not panic.

Date: $0 \frac{1}{2} / \frac{1}{2} / 2019$				
Name	IL	ID (last 3 digits)		
Prapun	5	5	4	

1. In QAM system, the transmitted signal is of the form

$$x_{\text{QAM}}(t) = m_1(t)\sqrt{2}\cos(2\pi f_c t) + m_2(t)\sqrt{2}\sin(2\pi f_c t).$$

Here, we want to express $x_{OAM}(t)$ in the form

$$x_{\text{QAM}}(t) = \sqrt{2}E(t)\cos(2\pi f_c t + \phi(t)),$$

where $E(t) \ge 0$ and $\phi(t) \in (-180^{\circ}, 180^{\circ}]$.

This problem assumes the messages are piecewise constant. Their values during three time intervals are listed below. Find the values of E(t) and $\phi(t)$ during the corresponding time intervals.

Intervals	$m_1(t)$	$m_2(t)$	E(t)	$\phi(t)$	$m_1 - jm_2$
$0 \le t < 1$	-1	-1	$\sqrt{2}$	135°	$1 + j = \sqrt{2} \angle 135^{\circ}$
$1 \le t < 2$	0	5	5	-90°	$-5j = 5 \angle -90^{\circ}$
$2 \le t < 3$	-3	4	5	-126.87°	$-3 - 4j \approx 5 \angle -126.87^{\circ}$

2. Consider five plots below. The top one is the baseband message signal m(t) that is used in the modulation to create an FM signal. Identify which plot is $x_{FM}(t)$.

For example, during the time when m(t) has highest value should correspond to the time when FM signal has the highest frequency.