ECS 332: Principles of Communications 2019/1
 HW 4 - Due: September 27, 4 PM Solution
 Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 6 pages.
(b) (1 pt) Hard-copies are distributed in class. Original pdf file can be downloaded from the course website. Work and write your answers directly on the provided hardcopy/file (not on other blank sheets) of paper).
(c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided on the upper-right corner of this page. Furthermore, for online submission, your file name should start with your 10-digit student ID, followed by a space, the course code, a space, and the assignment number: " 5565242231332 HW4.pdf"
(d) $(8 \mathrm{pt})$ Try to solve all non-optional problems.
(e) Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Problem 1 (M2011). The Fourier transform $X(f)$ for a signal $x(t)$ is shown in Figure 4.1.

Figure 4.1: Plot of $X(f)$ for Problem 1.
Let $g(t)=x(-2 t)$ and $y(t)=x(4-2 t)$. Carefully sketch $|G(f)|$ and $|Y(f)|$.

$$
=x(-2(t-2))
$$

$$
\begin{aligned}
& =x(a t) \\
& \text { where } a=-2 .
\end{aligned}
$$

By the time-scaling property of Fourtier transform,

$$
\begin{gathered}
G(f)=\frac{1}{|a|} \times\left(\frac{f}{a}\right)=\prod_{2} \times\left(-\frac{f}{2}\right) \\
a=-2
\end{gathered}
$$

Next, recall that time-shifting does not change the magnitude of the Fourier transform.
Hence, $|\mathrm{Y}(\mathrm{f})|=|\mathrm{G}(\mathrm{f})|$.

Hence,

$|G(f)|=\left|\frac{1}{2} \times\left(-\frac{f}{2}\right)\right|=\frac{1}{2}\left|\times\left(\frac{-f}{2}\right)\right|$.

time reversal by a factor of 2

The main purpose of this problem is to see the spectrum of cosine pulse.
Problem 2. 1
(a) Consider the cosine pulse

$$
2 \pi(5) t \Rightarrow \text { frog. }=5 \Rightarrow \text { From } t=-1 \text { to } t=1 \text {, }
$$

$$
p(t)= \begin{cases}\cos (\overbrace{10 \pi t}^{n}, & -1 \leq t \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(i) Sketch $p(t)$ for $-3 \leq t \leq 3$.

Here is a plot from MATLAB.
Of course, the instruction says to sketch, so, your answer should be hand-written. However, it should be similar to this.

(ii) Find $P(f)$ analytically.

In general, consider the pulse of the form $p(t)=\{\begin{array}{ll}\cos \left(2 \pi f_{0} t\right), & t_{1} \leqslant t \leqslant t_{2} \\ 0, & \text { otherwise. }\end{array}=\cos \left(2 \pi f_{0} t\right) \times \underbrace{r(t)}_{\downarrow}$
Writing it in this form makes it clear that we may view $p(t)$ as a modulated signal where $r(t)$ $r(t)$ is the rectangular pulse is the message.
Now we apply what we know about modulation:

In freq. domain, $R(f)$ is shifted to $\pm f_{0}$ (and scaled by $\frac{1}{2}$).
In particular, $P(f)=\frac{1}{2}\left(R\left(f-f_{0}\right)+R\left(f+f_{0}\right)\right) \cdot \star$
Here, $f_{0}=5, t_{1}=-1$, and $t_{2}=1$.

(iii) Sketch $P(f)$ from -10 Hz to 10 Hz .

Here is a plot from MATLAB. Of course, the instruction says to sketch, so, your answer should be hand-written. However, it should be similar to this.

[^0](b) Consider the cosine pulse
\[

p(t)=\left\{$$
\begin{array}{ll}
\cos (10 \pi t), & 2 \leq t \leq 4 \\
0, & \text { otherwise }
\end{array}
$$ Again, as in part a.ii, the main task here is to find \mathrm{R}(\mathrm{f})\right. .
\]

(i) Find $P(f)$ analytically.
start with

Here, $\tau=t_{2}-t_{1}$.
Observe that $r(t)$ is the time-shifted version of the ee(t) above: $r(t)=e\left(t-\frac{t_{2}+t_{2}}{2}\right)$
By the time-shift property,
$R(f)=e^{-j 2 \pi f \frac{t_{1}+t_{2}^{2}}{2}} \times(f)=e^{-j \pi f\left(t_{1}+t_{2}\right)}\left(t_{2}-t_{1}\right) \operatorname{sinc}\left(\pi f\left(t_{2}-t_{1}\right)\right)$
Because $\left.\right|^{2} \mid=1$ we know that $|R(f)|=|x(f)|$.
Becouse $\left.\right|^{2} \mid=1$, we know that $|R(f)|=|x(f)|$.
Here, $f_{0}=5(\operatorname{sanc}), t_{1}=2$, and $t_{2}=4$. Therefore, $R(f)=e^{-j 6 \pi t} 2 \operatorname{sinc}(2 \pi f)$
and $P(f)=e^{-j 6 \pi(f-5)} \operatorname{sinc}(2 \pi(f-5))+e^{-j 6 \pi(f+5)} \operatorname{sinc}(2 \pi(f+3)) \quad$ A
(ii) Use MATLAB. Mimic the code in specrect.m to plot the spectrum of $p(t)$. Follow the settings below:

- Consider the time t from 0 to $10[\mathrm{~s}]$ when you set up the time vector.
- Use the sampling frequency of 500 samples per sec. So, the sampling interval (the time between adjacent samples) is $T_{s}=1 / 500$.
- With the above sampling frequency, plotspect will plot the magnitude spectrum from -250 to 250 Hz . Use the function xlim (or the magnifier glass GUI) to limit your frequency view to be only from -10 to +10 Hz .
(iii) Also in MATLAB, add the plot of your analytical answer from part (i) into the same figure as part (ii).
- Print this figure and attach it at the end of your HW.
- On this attached page, compare the two plots. (Write some description/observation. Are they the same? How can you tell?)
Caution: The built-in sinc function in MATLAB is defined using the normalized version. So, you will need to remove a factor of π from the argument of each sinc function found in part (i) when you type it into MATLAB.

Q3.b.ii The magnitude spectrum plot from the modified specrect.m is provided in the bottom part of the figure below.

Q3.b.iii In addition, the analytical expression in part (i) is plotted using the " x " marks on top of the provided plot from specrect.m.

The two plots generally agrees. However, small difference can be observed. The plot from plotspec seems to be shifted to the left by a small amount from the analytical prediction.

Problem 3. You are given the baseband signals (i) $m(t)=\cos 1000 \pi t$; (ii) $m(t)=2 \cos 1000 \pi t+$ $\cos 2000 \pi t$; (iii) $m(t)=(\cos 1000 \pi t) \times(\cos 3000 \pi t)$. For each one, do the following.
(a) Sketch the spectrum of $m(t)$.
(b) Sketch the spectrum of the DSB-SC signal $m(t) \cos (10,000 \pi t)$.
[Lathi and Ding, 2009, Q4.2-1]
Recall that the spectrum of $\cos \left(2 \pi f_{0} t\right)$ is given by Recall that the spectrum of $m(t) \cos \left(2 \pi f_{c} t\right)$ is given by

$$
\begin{aligned}
& \text { (ipa) } m(t)=\cos 1000 \pi t=\cos (2 \pi 500 t) \\
& \rightarrow f_{0}=500 \mathrm{~Hz}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} m\left(f-f_{c}\right)+\frac{1}{2} m\left(f+f_{c}\right) \\
& \uparrow \quad L \text { shift } m(f) \text { to the left by } f_{c} \\
& \text { shift } m(f) \text { to the right by } f_{c} .
\end{aligned}
$$

Here, $f_{c}=5000 \mathrm{~Hz}$
(ib)

(iii.b) Here, we multiply again by $\cos (2 \pi 5,000 t)$. So, the spectrum from (ilia) is shifted by $\pm 5,000 \mathrm{~Hz}$ and scaled vertically by $\frac{1}{2}$.
domain is the same as shitting the spectrum
content by $\pm 1500 \mathrm{~Hz}$ and vertically scaling
 by $\frac{1}{2}$.

Problem 4. Given a system with input-output relationship of

$$
y(t)=2 x(t)+10,
$$

is this system linear? [Carlson and Crilly, 2009, Q2.3-10]
One requirement for a system to be linear is that
"proportional changes in the input should give the same proportional changes in the output"
In particular,
In our case, we have $y=2 x+10$.
so, if $x=1, y=2 \times 1+10=12$.
if $x=1$ corresponds to $y=12$,
then $x=1 \times 2$ should correspond to $y=12 \times 2=24$.
For linear system, when $x=2$, we expect y to be 24 .
(Doubling the input causes the output to double.) However, by its definition, when $a=2$, our system gives $y=2 \times 2+10=14 \neq 24$.
Therefore, the system is not linear.
Problem 5. Signal $x(t)=10 \cos \left(2 \pi \times 7 \times 10^{6} \times t\right)$ is transmitted to some destination. The received signal is $y(t)=10 \cos \left(2 \pi \times 7 \times 10^{6} \times t-\pi / 6\right)$. $\theta \quad$ We assume that the delay is caused
(a) What is the minimum distance between the source and destinatiosignal.
$y(t)=10 \cos \left(2 \pi f_{c} t-\theta\right)=10 \cos \left(2 \pi f_{c}\left(t-\frac{\theta}{2 \pi} f_{c}\right)\right) \quad \tau$ In the lecture, wa use
The amount of time delay can be calculated from delay $=\frac{d_{i s t a n c e}^{C}}{C_{R}}$ speed of light.
Therefore, "one possible" distance value is by the propagation time of the
distance $=c \times$ delay $=c \times \frac{\theta}{2 \pi f_{c}}=\bar{\lambda}_{c} \frac{\theta}{2 \pi}$ the carrier $=2 \times 10^{8} \times \frac{2 \pi 142}{2 \text { wave } \times 7 \times 10^{6}}=\frac{100}{28} \approx 3.57 \mathrm{~m}$
Because the cosine function is periodic,
the calculation above gives only one of the many possible distance values.
See the discussion in the next part for the proof that 3.57 is the minimum distance.
(b) What are the other possible distances?

By periodicity of cosine,

$$
\cos \left(2 \pi f_{c} t-\theta\right)=\cos \left(2 \pi f_{c} t-\theta+2 \pi k\right) \text { for any integer } k \text {. }
$$

So, in part (a), we should have considered
$\cos \left(2 \pi f_{c} t-\theta+2 \pi k\right)=\cos (2 \pi f_{c}(t-\underbrace{\frac{\theta}{2 \pi t_{c}}-\frac{k}{f}}))) \Rightarrow$ distance $=c \times \tau=\frac{c}{f_{c}}\left(\frac{\theta}{2 \pi}-k\right)=\lambda_{c}\left(\frac{\theta}{2 \pi}-k\right)$
Distance is a positive quantity. So, we need $k<\frac{\theta}{2 \pi}=\frac{\pi / 6}{2 \pi}=\frac{1}{12}$. In other words, k can be $0,-1,-2,-3, \ldots$.
[Carlson and Crilly, 2009, Q2.3-14]
The greater the value of k, the smaller corresponding distance value. Here, " 0 " is the largest value for k. Therefore, the minimum distance can be found by plugging-in $k=0$. The resulting distance is the same as what we (naively) found in part (a).

From the Fourier transform properties reviewed in lecture, we have seen several interesting integrations.
In particular,

$$
\int_{-\infty}^{\infty} G(f) d f=g(0), \quad \int_{-\infty}^{\infty} g(t) d t=G(0), \quad \int_{-\infty}^{\infty} x(t) y(t) d t=\int_{-\infty}^{\infty} x(f) \gamma^{*}(f) d f .
$$

ELS 332
WW 4 - Due: September 27, 4 PM 2019/1
In this question, we use them to evaluate integrals involving sine functions. Note that direct integration of a sing function is difficult. However, its Fourier transform is a simple rectangular function which is easy to evaluate or integrate. Problem 6 (M2011). Use properties of Fourier transform to evaluate the following integrals. (Do not integrate directly. Recall that $\operatorname{sinc}(x)=\frac{\sin (x)}{x}$.) Clearly state the property or properties that you use. First note that

(b) $\int_{-\infty}^{\infty} \operatorname{sinc}(\sqrt{5} x) \operatorname{sinc}^{*}(\sqrt{7} x) d x \quad \begin{aligned} & \text { The function is real-valued. Therefore, we can freely add the } \\ & \text { conjugate operator. }\end{aligned}$ From part (a), replacing the number $\sqrt{5}$ by an arbitrary constant c, we have $\sin c(c x) \xrightarrow{5}$

Therefore,

$$
\begin{aligned}
& \text { (c) (Optional) } \int_{-\infty}^{\infty} e^{-2 \pi f \times 2 j} 2 \operatorname{sinc}(2 \pi f)\left(e^{-2 \pi f \times 5 j} 2 \operatorname{sinc}(2 \pi f)\right)^{*} d f
\end{aligned}
$$

(d) (Optional) $\int_{-\infty}^{\infty} \operatorname{sinc}(\pi(x-5)) \operatorname{sinc}\left(\pi\left(x-\frac{7}{2}\right)\right) d x$
(c) The integral is already of the form $\int_{-\infty}^{\infty} x(f) Y^{*}(f) d f$ where

$$
\begin{aligned}
& X(f)=e^{-2 \pi f \times 2 j} 2 \operatorname{sinc}(2 \pi f)=e^{-j 2 \pi f(2)} G(f) \\
& Y(f)=e^{-2 \pi f \times 5 j} 2 \operatorname{sinc}(2 \pi f)=e^{-j 2 \pi f(5)} G(f) \\
& G(f)=2 \sin c(2 \pi f)
\end{aligned}
$$

From (Parseval's theorem), we know that we can evaluate the integral from $\int_{-\infty}^{\infty} x(t) y^{*}(t) d t$. so, we will first find $x(t)$ and $y(t)$.

By the time-shifting property, we know that

$$
\begin{align*}
& x(f)=e^{-j 2 \pi f(2)} G(f) \xrightarrow{J^{-1}} x(t)=g(t-2) \\
& Y(f)=e^{-j 2 \pi f(5)} G(f) \xrightarrow{F^{-1}} x(t)=g(t-5) . \tag{5}
\end{align*}
$$

So, we must first find $g(t)$. width $=1 / 1 / 2=2$

(2) "period" $=\frac{1}{1}=1$

Therefore,

Next, recall that
(with $c=1$)
(d) start with $g(x)=\operatorname{sinc}(\pi x)$
$\sin c\left(\pi\left(x-x_{0}\right)\right) \xrightarrow{J} e^{-j 2 \pi x_{0} f} G(f)$ by the "time"-shitting property.
By $\star \approx \approx$ (paseval's theorem), the integral under consideration is the same as

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{-j 2 \pi x_{1} f} G(f)\left(e^{-j 2 \pi x_{2} t} d(f)\right)^{*} d f=\int_{-\infty}^{\infty} \mid G(f)^{2} e^{j 2 \pi\left(x_{2}-x_{1}\right) f} d f \\
& \begin{array}{l}
\text { Note that the last integral here is exactly the }=\int_{-\infty} G(f) e^{j 2 \pi\left(x_{2}-x_{1}\right) f} d f \\
\text { same as the inverse Fourier transform of } G(f)
\end{array} \\
& \text { evaluated at } x=x_{2}-x_{1} \text {. } \\
& =\operatorname{sinc}\left(\pi\left(x_{2}-x_{1}\right)\right)
\end{aligned}
$$

Here, $x_{2}-x_{1}=\frac{Z}{2}-5=-\frac{3}{2}$. So, the integral is $\frac{\sin \left(-\frac{3}{2} \pi\right)}{-\frac{3}{2} \pi}=\frac{1}{-\frac{3}{2} \pi}=-\frac{2}{3 \pi}$. (If $x_{2}-x_{1}$ is an integer then the integral is 0 .)

[^0]: ${ }^{1}$ Inspired by [Carlson and Crilly, 2009, Q2.2-1 and Q2.2-2].

