ECS 332: Principles of Communications
HW 2-Due: August 30, 4 PM Solution
Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 5 pages.
(b) (1 pt) Work and write your answers directly on these provided sheets (not on other blank sheet(s) of paper). Hard-copies are distributed in class.
(c) (1 pt) Write your first name and the last three digits of your student ID on the upperright corner of this page.
(d) (8 pt) Try to solve all problems.
(e) Late submission will be heavily penalized.

Problem 1. In class, we have seen how to use the Euler's formula to show that

$$
\cos ^{2} x=\frac{1}{2}(\cos (2 x)+1)
$$

For this question, apply similar technique to show that

$$
\cos A \cos B=\frac{1}{2}(\cos (A+B)+\cos (A-B))
$$

$\cos A \cos B=\frac{1}{2}\left(e^{j A}+e^{-j A}\right) \times \frac{1}{2}\left(e^{j B}+e^{-j B}\right)$

$$
=\frac{1}{2}(\cos (A+B)+\cos (A-B))
$$

Steps:
(1) Replace cos and sin with complex exponential functions.
(2) Simplify or rearrange
the expression
(3) Convert back to cos and \sin

First, we convert the given expressions into complex exponential functions. Then, we use the fact that $e^{j 2 \pi f_{0} t}$ in the time domain corresponds to the delta function at $f=f_{0}$ in the frequency domain
ELS 332
WW 2 - Due: August 30, 4 PM

Problem 2. Plot (by hand) the Fourier transforms of the following signals
(a) $\cos (\underbrace{20 \pi t}_{l})=\frac{e^{j A}+e^{-j A}}{2}=\frac{1}{2} e^{j A}+\frac{1}{2} e^{-j A}=\frac{1}{2} e^{j 2 \pi(10) t}+\frac{1}{2} e^{j 2 \pi(-10) t}$. $A=2 \pi(10) t$

So, the plot of its Fourier transform is

Altematively, one may simply remember that the Fourier transform of $\cos \left(2 \pi f_{0} t\right)$ is simply delta functions of size $\frac{1}{2}$ at f_{0} and $-f_{0}$.
(b) $\cos (20 \pi t)+\cos (40 \pi t)$

For $\cos (\underbrace{40 \pi t})$, the corresponding frequencies are $\pm 20 \mathrm{~Hz}$.

$$
\begin{aligned}
2 \pi f_{0} t & =40 \pi t \\
f_{0} & =20
\end{aligned}
$$

So, the plot of the Fourier transform of $\cos (20 \pi t)+\cos (40 \pi t)$ is

(c) $(\cos (20 \pi t))^{2}$
$(\cos (\underbrace{20 \pi t}))^{2}=(\cos A)^{2}=\left(\frac{1}{2}\left(e^{j A}+e^{-j A}\right)\right)^{2}=\frac{1}{4}\left(e^{2 j A}+2+e^{-2 j A}\right)$
$A=20 \pi t \quad=\frac{1}{4} e^{j 2 \pi(20) t}+\frac{1}{2} \underbrace{e^{j 2 \pi(0) t}}_{1}+\frac{1}{4} e^{j 2 \pi(-20) t}$

$$
=2 \pi(10) t
$$

So, the plot of its Fourier transform is

(d) $\cos (\underbrace{20 \pi t}) \times \cos (\underbrace{40 \pi t})=\cos (A) \cos (B)=\frac{1}{2}\left(e^{j A}+e^{-j A}\right) \frac{1}{2}\left(e^{j B}+e^{-j B}\right)$

$$
\begin{aligned}
A=20 \pi t \\
=2 \pi(10) t
\end{aligned} \quad \begin{aligned}
& B=40 \pi t \\
&=2 \pi(20) t=\frac{1}{4}\left(e^{j(A+B)}+e^{j(-A+B)}+e^{j(A-B)}+e^{j(-A-B)}\right) \\
&=\frac{1}{4}\left(e^{j 2 \pi(30) t} 2-2+e^{j 2 \pi(10) t}+e^{j 2 \pi(-10) t}+e^{j 2 \pi(-30) t}\right)
\end{aligned}
$$

So, the plot of its Fourier transform is

$$
\begin{array}{cc|cc}
1^{1 / 4} & \uparrow^{1 / 4} & \uparrow^{1 / 4} & \uparrow^{1 / 4} \\
-30 & -10 & 10 & 30
\end{array}
$$

(e) $(\cos (20 \pi t))^{2} \times \cos (40 \pi t)=(\underbrace{\frac{1}{4} e^{j 2 \pi(20) t}+\frac{1}{2}+\frac{1}{4} j^{j 2 \pi(-20) t}}_{\text {from part (c) }}) \times\left(\frac{1}{2} e^{j 2 \pi(20) t}+\frac{1}{2} e^{j 2 \pi(-2 \omega t}\right)$

Problem 3. Evaluate the following integrals:
(a) First, recall that $\int_{A} \delta(t) d t=\left\{\begin{array}{ll}1, & 0 \in A, \\ 0, & 0 \notin A .\end{array}\right.$ In particular, $\int_{-\infty}^{\infty} \delta(t) d t=1$.
(i) $\int_{-\infty}^{\infty} 2 \delta(t) d t=2 \int_{-\infty}^{\infty} \delta(t) d t=2 \times 1=2$.
(ii) \int_{-2}^{2} Consider the function $4 \delta(t-1)$ graphically.

(iii) $\int_{-3}^{2} 4 \delta(t-3) d t \xrightarrow{\text { Consider the function }} 4$
(b) $\int_{-\infty}^{\infty} \delta(t) \underbrace{e^{-j 2 \pi f t} d t=\int_{-\infty}^{\infty} g(t) \delta(t) d t=g(0)=\left.e^{-j 2 \pi f t}\right|_{t=0}=e^{0}=1, ~(t)}_{\text {sifting property }}$
(c)

$$
\text { (i) } \int_{-\infty}^{\infty} \delta(t-2) \underbrace{\sin (\pi t)} d t=\int_{-\infty}^{\infty} g(t) \delta(t-2) d t=g(2)=\left.\sin (\pi t)\right|_{t=2}=\sin (2 \pi)=0
$$

sifting property va
(ii) $\int_{-\infty}^{\infty} \delta(t+3) \underbrace{e^{-t} d t=\int_{-\infty}^{\infty} g(t) \delta(t-(-3)) d t=g(-3)=\left.e^{-t}\right|_{t=-3}=e^{-(-3)}=e^{3}{ }^{3}{ }^{\downarrow} d t}$
(iii) $\begin{aligned} \int_{-\infty}^{\infty} e^{(x-1)} \cos \left(\frac{\pi}{2}(x-5)\right) \delta(x-3) d x=\int_{-\infty}^{\infty} g(t) \delta(x-3) d x=g(3) & =\left.e^{x-1} \cos \left(\frac{\pi}{2}(x-5)\right)\right|_{x=3} \\ & =e^{2} \cos (-\pi)=-e^{2}\end{aligned}$ It takes the role of " t " in our formula.
(d) This part has the delta function in the form $\delta(T-t)$.
we use the "change of variables* technique to evaluate the integral: $\int \rho(t) \delta(T-t) d t=-\int_{-\infty}^{\infty} g(T-\tau) \delta(\tau) d \tau$
(i) $\int_{-\infty}^{\infty}\left(t^{3}+4\right) \delta(1-t) d t=t^{3}+\left.4\right|_{t=1}=1^{3}+4=1+4=5$
(ii) $\int_{-\infty}^{\infty} g(2-t) \delta(3-t) d t=\left.g(2-t)\right|_{t=3}=g(2-3)=g(-1)$
$=\iint_{g}(T-t) \delta(t) d t$
Remark: From $\int_{-\infty}^{\infty} g(t) \delta(T-t) d t=g(T)$, we $\operatorname{get} \int_{(g * \delta)(t)}^{\infty} g(\tau) \delta(t-\tau) d \tau-g(t)$ simply by variable renaming $\left(\begin{array}{l}t \rightarrow \tau) \\ T \rightarrow t)\end{array}\right.$ $=g(T-0)=g(T)$.
(e) $\int_{-2}^{-\infty} \delta(2 t) d t$
$\begin{aligned} &-2=\int_{-4}^{4} \delta(x) \frac{1}{2} d x=\frac{1}{2} \times \int_{-4}^{4} \delta(x) d x=\frac{1}{2} \times 1=\frac{1}{2} . \\ & \text { change }\left\{\begin{array}{ll}x & =2 t \\ t & =\frac{1}{2} x\end{array} \quad 0 \in(-4,4)\right.\end{aligned}$

> Alternatively, we know that $\delta(a t)=\frac{1}{|a|} \delta(t)$.
> Therefore, $\delta(2 t)=\frac{1}{2} \delta(t)$.
change
of
variables $\left\{\begin{array}{l}t=\frac{1}{2} x \\ d t=\frac{1}{2} d x\end{array}\right.$
Hence, $\int_{-2}^{2} \delta(2 t) d t=\int_{-2}^{2} \frac{1}{2} \delta(t) d t$
Problem 4. Consider the signal $g(t)$ shown in Figure 2.1.

Figure 2.1: Problem 4
(a) Carefully sketch the following signals:
(i) $y_{1}(t)=g(-t)$
(ii) $y_{2}(t)=g(t+6)$
(a)
(i) Recall the time inversion (time reversal) operation
$g(-t)$ is the mirrow image of $g(t)$ about the vertical axis.
(ii) Recall the time shifting operation:
$g(t-T)$ represents $g(t)$ time-shifted by T.
If T is positive, the chit is to the right (delay).
If T is negative, the shift is to the left (by $|T|$).
Here, $y_{2}(t)=g(t+6)=g(t-(-6))$.
So, $y_{2}(t)$ is simply $g(t)$ shifted to the left by 6 time units.
(iii) Recall the time scaling operation:
$g(a t)$ is $g(t)$ compressed in time by the factor a. τ for $a>1$

So, $y_{3}(t)=g(3 t)$ is simply $g(t)$ compressed in time by a factor of 3 .
(iv) The tricky one would be $g(6-t)$.

There are two ways to think about it
(1)
mirror image
shift to
about the the right by 6 vertical axis
(2) $g(t) \xrightarrow{\text { time shift, } T=-6} g(t+6) \xrightarrow{\text { time inversion }} g(-t+6)$
shift to
the left by 6
(iii) $y_{3}(t)=g(3 t)$
(iv) $y_{4}(t)=g(6-t)$.

(b) Find the "net" area under the graph for each of the signals in the previous part. (Mathematically, this is equivalent to integrating each signal from $-\infty$ to $+\infty$. However, directly calculating and combining positive and negative areas from the plots should be easier.) First, note that, for any constent m, c,

