ECS 332: In-Class Exercise \# 5

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

In this problem, we have three "devices".

- $(.)^{2}$ is a "square" device. As the name suggests, its output is created by squaring its input in the time domain.
- $H_{1}(f)$ is an LTI device whose frequency response is $\left.H_{1}(f)=\left\{\begin{array}{ll}1, & |f|<200, \\ 0, & \text { otherwise. }\end{array}\right\} \begin{array}{l}\text { Recall that } \\ 1, \\ |f|>200,\end{array}\right\} \begin{aligned} & \text { j2rfot }\end{aligned} H(f) \rightarrow H\left(f_{0}\right) e^{j 2 \sigma f_{0} t}$
- $H_{2}(f)$ is an LTI device whose frequency response is $H_{2}(f)= \begin{cases}1, & |f|>200, \\ 0, & \text { otherwise. }\end{cases}$

Find the output $y(t)$ for each of the systems below.

$$
2 \pi f_{0} t \Rightarrow f_{0}=150 \mathrm{~Hz}
$$

(a) $x(t)=\cos (300 \pi t) \longrightarrow H_{1}(f) \longrightarrow y(t) \quad H_{1}(\pm 150)=1$ be cause $\mid \pm 150 \mathrm{~K} 200$.

$$
=\frac{1}{2} e^{j 2 \pi(150) t}+\frac{1}{2} e^{j 2 \pi(-150) t}
$$

$y(t)=\underbrace{1+(150)}_{1} \frac{1}{2} e^{j 2 \pi(150) t}+\underbrace{H+1-150)}_{1} \frac{1}{2} e^{j 2 \pi(-150) t}=\frac{1}{2} e^{j 2 \pi(150) t} r \frac{1}{2} e^{j 2 \pi(-150) t}=\cos (300 \pi t)$.
(b) $x(t)=\cos (300 \pi t) \longrightarrow H_{2}(f) \longrightarrow y(t) \quad H_{2}(\pm 150)=0$ because $| \pm 150| \geqslant 200$.
$\begin{aligned} & y(t)=\underbrace{H_{2}(150)}_{0} \frac{1}{2} e^{j 2 \pi(130) t}+\underbrace{H_{2}(-150)}_{0} \frac{1}{2} e^{j 2 \pi(-150) t}=0 . \\ & H_{1}(0)=1 \text { be cause } 101<200\end{aligned}$
(c) $x(t)=\cos (300 \pi t) \longrightarrow(\cdot)^{2} \xrightarrow{x^{2}(t)} H_{1}(f) \longrightarrow y(t) \quad H_{1}(\pm 300)=0$ because $\left.\mid \pm 300\right) \nmid 200$ $x^{2}(t)=\left(\frac{1}{2} e^{j \theta}+\frac{1}{2} e^{-j \theta}\right)^{2}=\frac{1}{4}\left(e^{j(2 \theta)}+2+e^{j(-2 \theta)}\right)$
$y(t)=\frac{1}{4}(\underbrace{H_{1}(300)}_{0} e^{j 2 \pi(300) t}+2 \underbrace{H_{1}(0)}+\underbrace{H_{1}(-300)}_{0} e^{j 2 \pi(-300) t})=\frac{1}{4} \times 2 \times 1=\frac{1}{2}$.
(d) $x(t)=\cos (300 \pi t) \longrightarrow(\cdot)^{2} \xrightarrow{x^{2}(t)^{1}} H_{2}(f) \longrightarrow y(t) \quad H_{2}(0)=0$ because $0 \ngtr 200$

$$
H_{2}(\pm 300)=1 \text { because }| \pm 300|>200
$$

$y(t)=\frac{1}{4}(\underbrace{H_{2}(300)}_{1} e^{j 2 \pi(300) t}+2 \underbrace{H_{0}(0)}_{0}+\frac{H_{1}(-300)}{0} e^{j 2 \pi(-300) t})=\frac{1}{4}\left(e^{j 600 \pi t}+e^{-j 600 \pi t}\right)=\frac{1}{2} \cos (600 \pi t)$.
(e) $x(t)=\cos (300 \pi t) \longrightarrow(\cdot)^{2} \xrightarrow{\partial^{2}(t)} H_{1}(f) \xrightarrow{v(t)} H_{2}(f) \longrightarrow y(t)$

From part (c), vet) $\equiv \frac{1}{2}$.
$y(t)=H_{2}(0) \frac{1}{2}=0 \times \frac{1}{2}=0$.
(f)
$\begin{aligned} x(t)=\cos (300 \pi t) & H_{1}(f) \\ & \text { From port (a) }\end{aligned}$ we know that

From part (d), we have $y(t)=\frac{1}{2} \cos (600 \pi t)$
we still have $\cos (300 \pi t)$ here.

ECS 332：In－Class Exercise \＃ 5 Alternative solution

Instructions

1．Separate into groups of no more than three persons．The group cannot be the same as any of your former groups．
2．Write down all the steps that you have done to obtain your answers．You may not get full credit even when your answer is correct without showing how you get your answer．
3．Do not panic．

Date ：＿＿／＿＿／2018		
Name	ID	

In this problem，we have three＂devices＂．
－$(.)^{2}$ is a＂square＂device．As the name suggests，its output is created by squaring its input in the time domain．
－$H_{1}(f)$ is an LTI device whose frequency response is $H_{1}(f)= \begin{cases}1, & |f|<200, \\ 0, & \text { otherwise．}\end{cases}$

$\cos \left(2 \pi t_{t}\right) \rightarrow H(f) \rightarrow \frac{1}{2} H\left(t_{0}\right) e^{j 2 \pi / t}+\frac{1}{4} H(-\alpha) e^{-j 2 \pi N_{0} t}$

Find the output $y(t)$ for each of the systems below． and $\mathrm{H}_{2}(-f)=\mathrm{H}_{2}(f)$ $2 \pi f_{0} t \Rightarrow f_{0}=150 \mathrm{~Hz} \quad \begin{aligned} & \text { at all freq．Therefore，the } \\ & \text { result above can be applied．}\end{aligned}$
－$H_{2}(f)$ is an LTI device whose frequency response is $H_{2}(f)= \begin{cases}1, & |f|>200, \\ 0, & \text { otherwise．}\end{cases}$
（a）$x(t)=\cos (300 \pi t) \longrightarrow H_{1}(f) \longrightarrow y(t) \quad H_{1}(\pm 150)=1$ be cause l土150k 200 ． Therefore，$x(t)$ will pass through $H_{1}(f)$ unchanged．

$$
\Rightarrow y(t)=x(t)=\cos (300 \pi t)
$$

（b）$x(t)=\cos (300 \pi t) \longrightarrow H_{2}(f) \longrightarrow y(t) \quad H_{2}(\pm 150)=0$ because \mid 上150｜》200． Therefore，$x(t)$ can not pass through $H_{2}(f)$ ．

$$
\Rightarrow y(t) \equiv 0
$$

（c）$x(t)=\cos (300 \pi t) \longrightarrow(\cdot)^{2} \xrightarrow{2^{2}(t)} H_{1}(f) \longrightarrow y(t)$ $(\cos (2 \pi(130) t))^{2}=\frac{1}{2}+\frac{1}{2} \cos (2 \pi(300) t)$.
$H_{1}(0)=1$ because lo l <200 $H_{1}(\pm 300)=0$ because $\left.\mid \pm 300\right) \nless 200$ Therefore，only the DC component of $\alpha^{2}(t)$ can pass through $H_{1}(t)$ ． $\Rightarrow y(t) \equiv 1 / 2$
（d）$x(t)=\cos (300 \pi t) \longrightarrow(\cdot)^{2} \xrightarrow{x^{2}(t)} H_{2}(f) \longrightarrow y(t)$ $H_{2}(0)=0$ because $0 \geqslant 200$ Therefore，only the components at $\pm 300 H 2$ $H_{2}(\pm 300)=1$ because $| \pm 300|>200$ of $x^{2}(t)$ can pass through $H_{2}(t)$ ．

$$
\Rightarrow y(t)=\frac{1}{2} \cos (2 \pi(300) t)=\frac{1}{2} \cos (600 \pi t)
$$

（e）$x(t)=\cos (300 \pi t) \longrightarrow(\cdot)^{2} \xrightarrow{e^{2}(t)} H^{H_{1}(f)} \longrightarrow H_{2}(f) \longrightarrow y(t)$
$H_{1}(f) H_{2}(f) \equiv 0$ for all f
Therefore，no signal can pass through this system．$\Rightarrow y(t) \equiv 0$
（f）

$$
\begin{aligned}
x(t)=\cos (300 \pi t) \longrightarrow & H_{1}(f) \rightarrow(\cdot)^{2} \longrightarrow H_{2}(f) \longrightarrow \xrightarrow{\rightarrow} y(t) \\
& \text { From port (a), } \\
& \text { we know that } \\
& \text { we still have } \cos (300 \pi t) \text { here. }
\end{aligned}
$$

（d），we have $y(t)=\frac{1}{2} \cos (600 \pi t)$

