
ECS 332: Principles of Communications 2018/1

HW 4 — Due: Not Due

Lecturer: Prapun Suksompong, Ph.D.

Name ID3

Problem 1. Consider the DSB-SC modem with no channel impairment shown in Figure
4.1. Suppose that the message is band-limited to B = 3 kHz and that fc = 100 kHz.
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Figure 4.1: DSB-SC modem with no channel impairment

(a) Specify the frequency response HLP (f) of the LPF so that m̂(t) = m(t).
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(b) Suppose the impluse response hLP (t) of the LPF is of the form α sinc(βt). Find the
constants α and β such that m̂(t) = m(t).

Problem 2. Consider the two signals s1(t) and s2(t) shown in Figure 4.2. Note that V and
Tb are some positive constants. Your answers should be given in terms of them.

(a) Find the energy in each signal.
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�Fig. 5.5 (a) Signal set for Example 5.2, (b) orthonormal functions.
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Graphically, the orthonormal basis functions φ1(t) and φ2(t) look as in Figure 5.5(b) and
the signal space is plotted in Figure 5.6. The distance between the two signals can be easily
computed as follows:

d21 =
√

E + E = √2E = √2
√

E. (5.35)

�

In comparing Examples 5.1 and 5.2 we observe that the energy per bit at the transmitter
or sending end is the same in each example. The signals in Example 5.2, however, are closer
together and therefore at the receiving end, in the presence of noise, we would expect more
difficulty in distinguishing which signal was sent. We shall see presently that this is the
case and quantitatively express this increased difficulty.

Example 5.3 This is a generalization of Examples 5.1 and 5.2. It is included princi-
pally to illustrate the geometrical representation of two signals. The signal set is shown

Figure 4.2: Signal set for Question 2

(b) Are they energy signals?

(c) Are they power signals?

(d) Find the (average) power in each signal.

(e) Are the two signals s1(t) and s2(t) orthogonal?

Problem 3. (Power Calculation) For each of the following signals g(t), find (i) its corre-
sponding power Pg =

〈
|g (t)|2

〉
, (ii) the power Px =

〈
|x (t)|2

〉
of x (t) = g (t) cos (10t), and

(iii) the power Py =
〈
|y (t)|2

〉
of y (t) = g (t) cos (50t)

(a) g (t) = 3 cos (10t+ 30◦).
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(b) g (t) = 3 cos (10t+ 30◦) + 4 cos (10t+ 120◦). (Hint: First, use phasor form to combine
the two components into one sinusoid.)
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(c) g (t) = 3 cos (10t) + 3 cos (10t+ 120◦) + 3 cos (10t+ 240◦)

Extra Questions

Here are some optional questions for those who want more practice.

Problem 4. This question starts with a square-modulator for DSB-SC . Then, the use of
the square-operation block is further explored on the receiver side of the system. [Doerschuk,
2008, Cornell ECE 320]

(a) Let x(t) = Acm(t) where m(t)
F−−⇀↽−−
F−1

M(f) is bandlimited to B, i.e., |M(f)| = 0 for

|f | > B. Consider the block diagram shown in Figure 4.3.
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Figure 4.3: Block diagram for Problem 4a

Assume fc � B and

HBP (f) =


1, |f − fc| ≤ B
1, |f + fc| ≤ B
0, otherwise.
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The block labeled “{·}2” has output v(t) that is the square of its input u(t):

v(t) = u2(t).

Find y(t).

(b) The block diagram in part (a) provides a nice implementation of a modulator because
it may be easier to build a squarer than to build a multiplier. Based on the successful
use of a squaring operation in the modulator, we decide to use the same squaring
operation in the demodulator. Let

x (t) = Acm (t)
√

2 cos (2πfct)

where m(t)
F−−⇀↽−−
F−1

M(f) is bandlimited to B, i.e., |M(f)| = 0 for |f | > B. Again,

assume fc � B Consider the block diagram shown in Figure 4.4.
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Figure 4.4: Block diagram for Problem 4b

Use

HLP (f) =

{
1, |f | ≤ B
0, otherwise.

Find yI(t). Does this block diagram work as a demodulator; that is, is yI(t) propor-
tional to m(t)?

(c) Due to the failure in part (b), we have to think hard and it seems natural to consider
also the block diagram with cos replaced by sin. Let

x (t) = Acm (t)
√

2 cos (2πfct)

where m(t)
F−−⇀↽−−
F−1

M(f) is bandlimited to B, i.e., |M(f)| = 0 for |f | > B as in part (b).

Again, assume fc � B Consider the block diagram shown in Figure 4.5.

As in part (b), use

HLP (f) =

{
1, |f | ≤ B
0, otherwise.

4-7



ECS 332 HW 4 — Due: Not Due 2018/1

 

 x t  + 

 2 cos 2 cf t  

 
2

  LPH f  
 Iy t  

 x t  + 

 2 sin 2 cf t  

 
2

  LPH f  
 Qy t  

Figure 4.5: Block diagram for Problem 4c

Find yQ(t).

(d) Use the results from parts (b) and (c). Draw a block diagram of a successful DSB-SC
demodulator using squaring operations instead of multipliers.
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Problem 5 (Cube modulator). Consider the block diagram shown in Figure 4.6 where
“{·}3” indicates a device whose output is the cube of its input.

 

 m t  + 
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Figure 4.6: Block diagram for Problem 5. Note the use of f0 instead of fc.

Let m(t)
F−−⇀↽−−
F−1

M(f) be bandlimited to B, i.e., |M(f)| = 0 for |f | > B.

(a) Plot an H(f) that gives z (t) = m (t)
√

2 cos (2πfct). What is the gain in H(f)? What
is the value of fc? Notice that the frequency of the cosine is f0 not fc. You are supposed
to determine fc in terms of f0.
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(b) Let M(f) be

M (f) =

{
1, |f | ≤ B
0, otherwise.

(i) Plot X(f).

(ii) Plot Y (f). Hint:

M (f) ∗M (f) =

{
2B − |f | , |f | ≤ 2B
0, otherwise.

Do not attempt to make an accurate plot or calculation for the Fourier transform
of m3(t).

(iii) For your filter of part (a), plot z(t).
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[Doerschuk, 2008, Cornell ECE 320]

Problem 6. Consider a signal g(t). Recall that |G(f)|2 is called the energy spectral
density of g(t). Integrating the energy spectral density over all frequency gives the signal’s
total energy. Furthermore, the energy contained in the frequency band I can be found from
the integral

∫
I
|G(f)|2df where the integration is over the frequencies in band I. In particular,

if the band is simply an interval of frequency from f1 to f2, then the energy contained in
this band is given by ∫ f2

f1

|G(f)|2df. (4.1)

In this problem, assume
g(t) = 1[−1 ≤ t ≤ 1].

(a) Find the (total) energy of g(t).

(b) Figure 4.7 define the main lobe of a sinc pulse. It is well-known that the main lobe
of the sinc function contains about 90% of its total energy. Check this fact by first
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Figure 4.7: Main lobe of a sinc pulse

computing the energy contained in the frequency band occupied by the main lobe and
then compare with your answer from part (a).

Hint: Find the zeros of the main lope. This give f1 and f2. Now, we can apply (4.1).
MATLAB or similar tools can then be used to numerically evaluate the integral.

(c) Suppose we want to include more energy by considering wider frequency band. Let
this band be the interval I = [−f0, f0]. Find the minimum value of f0 that allows the
band to capture at least 99% of the total energy in g(t).
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