Instructions

- 1. Separate into groups of no more than three persons.
- 2. The group cannot be the same as any of your former groups.
- 3. Only one submission is needed for each group.
- 4. Do not panic.
- 1. Consider the rectangular pulse train r(t) shown in

Figure 1.

Date: <u>18</u> / <u>10</u> / 2017			
Name	ID (last 3 digits)		
Prapun	5	5	5

Write the appropriate coefficients in the boxes above. same $r(t) = C_0 + \sum \alpha_k \cos(2\pi(kf_0)t)$ Using another form of Fourier series expansion, we can write r(t) in the form k = 1

b. Using another form of Fourier series expansion, we can write
$$r(t)$$
 in the form $r(t)$ in the form $r(t)$

Write the appropriate coefficients in the boxes above.

2. Consider the rectangular pulse train r(t) shown in Figure 2.

