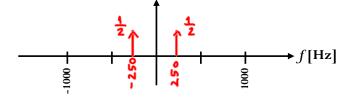

ECS 332: In-Class Exercise # 4

Instructions

- Separate into groups of no more than three persons.
- 2. The group cannot be the same as your former group.
- Only one submission is needed for each group.
- Do not panic.

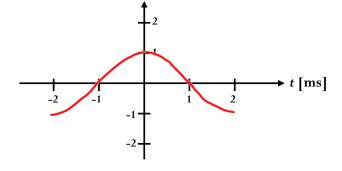
Date: 08 / 09 / 2017			
Name	ID (last 3 digits)		
Prapun	5	5	5
•			

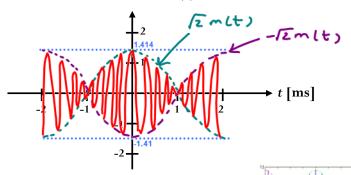

Suppose a baseband signal m(t) is transmitted via the modulator below. The carrier frequency is set at f_c Hz.

- a. Suppose $m(t) = \cos 500\pi t$ and $f_c = 1000$ Hz. Sketch the following signals.
- $\frac{1}{2} \times \sqrt{2} \times \frac{1}{2} = \frac{\sqrt{2}}{4} = \frac{1}{2\sqrt{2}}$

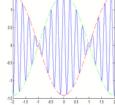
i. The spectrum M(f) of m(t).

ii. The spectrum X(f) of x(t).




b. (6 pt) Suppose $m(t) = \cos 500\pi t$ and $f_c = 4000$ Hz.

Sketch the following signals for time t between -2 and 2 ms.


i. The message m(t)

ii. The transmitted signal $x(t) = \sqrt{2} \cos(\omega_{c}t) \times \infty$

