HW 6 - Due: Nov 3, 4 PM Solution

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 6 pages.
(b) (1 pt) Work and write your answers directly on these provided sheets (not on other blank sheets) of paper). Hard-copies are distributed in class.
(c) (1 pt) Write your first name and the last three digits of your student ID on the upper-right corner of this page.
(d) $(8 \mathrm{pt})$ Try to solve all non-optional problems.
(e) Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Problem 1. Find the frequency of the signal $g(t)=3 \sqrt{2} \cos \left(12 t^{3}+t^{2}\right)$
(a) at time $t=0$

The instantaneous freq. of a signal of the form $g(t)=A \cos (\theta(t))$ is $f(t)=\frac{1}{2 \pi} \frac{d}{d t} \theta(t)$.
Here, $\theta(t)=12 t^{3}+t^{2}$. Therefore, $f(t)=\frac{1}{2 \pi}\left(12 \times 3 t^{2}+2 t\right)=\frac{1}{\pi}\left(18 t^{2}+t\right)$

$$
f(0)=\frac{1}{\pi}\left(18 \times 0^{2}+0\right)=0\left[H_{z}\right] .
$$

(b) at time $t=2$

$$
f(2)=\frac{1}{\pi}\left(18 \times 2^{2}+2\right)=\frac{74}{\pi} \approx 23.55[\mathrm{~Hz}] .
$$

Problem 2. Recall that, in QAM system, the transmitted signal is of the form

$$
x_{\mathrm{QAM}}(t)=m_{1}(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)+m_{2}(t) \sqrt{2} \sin \left(2 \pi f_{c} t\right) .
$$

We want to express x_{QAM} in the form

$$
x_{\mathrm{QAM}}(t)=\sqrt{2} E(t) \cos \left(2 \pi f_{c} t+\phi(t)\right),
$$

where $E(t) \geq 0$ and $\phi(t) \in\left(-180^{\circ}, 180^{\circ}\right]$. (This shows that QAM can be expressed as a combination of amplitude modulation and phase modulation.)

Consider $m_{1}(t)$ and $m_{2}(t)$ plotted in Figure 6.1.
Draw the corresponding $E(t)$ and $\phi(t)$.

corresponding polar form.
Below, we list the values of $m_{1}(t)$ and $m_{2}(t)$ during each time interval:

Problem 3. Consider the message $m(t)$ along with the carrier signal $\cos \left(2 \pi f_{c} t+\phi\right)$ plotted in Figure 6.2.

Figure 6.2: The message and the carrier signals for Problem 3.
(a) Find the carrier frequency f_{c} from the plot. (Hint: It is an integer.)

During time $t=0$ to $t=10^{-3}$, there are 5 cycles of $\cos \left(2 \pi f_{c} t+\phi\right)$. Therefore, its frequency is $f_{c}=\frac{5}{10^{-3}}=5 \mathrm{kHz}$.
(b) Sketch the following signals. Make sure that (the unspecified parameter(s) are selected such that) the important "features" of the graphs can be seen clearly.
(i) $x_{\mathrm{AM}}(t)=(A+m(t)) \cos \left(2 \pi f_{c} t+\phi\right)$ whose modulation index $\mu=100 \%=\frac{A}{m_{p}} \Rightarrow A=m_{p}=40$

$m(t)$ is having its minimum value.

- You may assume $m(t)=0$ for $t<0$.

$$
\begin{aligned}
& \text { case (3) : When } m(t) \text { is at its "low value, the inst. freer. f(t) } \\
& \text { of } x_{F_{m}}(t) \text { should dso be at it " low value. }
\end{aligned}
$$

Problem 4. Consider the FM transmitted signal

$$
x_{\mathrm{FM}}(t)=A \cos \left(2 \pi f_{c} t+\phi+2 \pi k_{f} \int_{-\infty}^{t} m(\tau) d \tau\right)
$$

where $f_{c}=5[\mathrm{kHz}], A=1$, and $k_{f}=75$. The message $m(t)$ is shown in Figure 6.3.

Figure 6.3: The message $m(t)$ for Problem 4

Figure 6.4: The magnitude spectrum $\left|X_{\mathrm{FM}}(f)\right|$ for Problem 4

The magnitude spectrum $\left|X_{\mathrm{FM}}(f)\right|$ is plotted in Figure 6.4.
(a) Find the values of f_{1}, f_{2}, and f_{3}. First, observe that $m(t)$ takes only 3 values: $-40,0,40$.

For FM, we know that $f(t)=f_{e}+k_{f} m(t)$. Therefore, here, the instantaneous freq. of the transmitted signal will take only three corresponding values. Plugging-in the possible values of $m(t)$ (from the lowest one to the highest one), we get

$$
\left.\begin{array}{l}
f_{1}=f_{c}+k_{f}(-40)=5 \times 10^{3}+75(-40)=5000-3000=2 \mathrm{kHz} \\
f_{2}=f_{6}+k_{f}(0)=f_{0}=5 k_{t} t \\
f_{3}=f_{6}+k_{f}(40)=5 \times 10^{3}+75(40)=5000+3000=\mathrm{kHz}
\end{array}\right\}
$$

Each portion of $m(t)$ creates a cosine pulse in the transmitted signal. Each cosine pulse corresponds to two sinc functions in the freq. domain: one at the freq. of the pulse and another at its negative.
(b) Find the width W in Figure 6.4.

The "width" of each of the sine pulse in the freer. domain is $W=\frac{2}{T_{s}}$.

Here, from the plot of $m(t)$ we have $T_{s}=1 \mathrm{~ms}$.
Therefore, $w=\frac{2}{1 \times 10^{-3}}=2 \mathrm{kHz}$.
(c) Find the occupied bandwidth denoted by BW in Figure 6.4.

$$
B W=\frac{1}{T_{5}}+\left(f_{3}-f_{1}\right)+\frac{1}{T_{s}}=(8-2)+2=8 \mathrm{kHz}
$$

Extra Questions

Here are some optional questions for those who want more practice.

Problem 5. Recall that, in QAM system, the transmitted signal is of the form

$$
x_{\mathrm{QAM}}(t)=m_{1}(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)+m_{2}(t) \sqrt{2} \sin \left(2 \pi f_{c} t\right) .
$$

In class, we have shown that

$$
\operatorname{LPF}\left\{x_{\mathrm{QAM}}(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)\right\}=m_{1}(t)
$$

Give a similar proof to show that

$$
\operatorname{LPF}\left\{x_{\mathrm{QAM}}(t) \sqrt{2} \sin \left(2 \pi f_{c} t\right)\right\}=m_{2}(t)
$$

$$
\begin{aligned}
& \text { Let } v(t)=\alpha_{\text {aAM }}(t) \sqrt{2} \sin \left(2 \pi f_{c} t\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 j}\left(e^{j 2 \alpha}-e^{-j 2 \mu}\right)=\sin (2 x) \\
& =m_{1}(t) \overbrace{\sin \left(2 \pi\left(2 f_{c}\right) t\right)+m_{2}(t)}^{6-5} \underbrace{=}_{\left(1-\cos \left(2 \pi\left(2 f_{c}\right) t\right)\right.}
\end{aligned}
$$

$$
\begin{aligned}
& v(t)=m_{2}(t)+\underbrace{m_{1}(t) \sin \left(2 \pi\left(2 f_{c}\right) t\right)}_{\uparrow}-\underbrace{\substack{\text { the spectrum } \\
\text { is centered } \\
\text { around } \pm 2 f_{c}}}_{\uparrow} \begin{array}{c}
\text { the spectrum } \\
m_{2}(t) \cos \left(2 \pi\left(2 f_{c}\right) t\right)
\end{array} \\
& \text { LP }\{v(t)\}=m_{2}(t)+0+0=m_{2}(t) \\
& \uparrow \\
& \text { Assumption: If } m_{1}(t) \text { is band limited to } B_{1} \\
& \begin{array}{l}
m_{2}(t) \text { is band limited to } B_{2} \text {, } \\
\text { we need } f_{c}>B_{1} \text { and } f_{c}>B_{2}
\end{array}
\end{aligned}
$$

Problem 6. In quadrature amplitude modulation ($\boldsymbol{Q A M}$) or quadrature multiplexing, two baseband signals $m_{1}(t)$ and $m_{2}(t)$ are transmitted simultaneously via the following QAM signal:

$$
x_{\mathrm{QAM}}(t)=m_{1}(t) \sqrt{2} \cos \left(\omega_{c} t\right)+m_{2}(t) \sqrt{2} \sin \left(\omega_{c} t\right)
$$

An error in the phase or the frequency of the carrier at the demodulator in QAM will result in loss and interference between the two channels (cochannel interference).

In this problem, show that

$$
\begin{aligned}
& \text { (a): } \operatorname{LPF}\{\overbrace{x_{\mathrm{QAM}}(t) \sqrt{2} \cos \left(\left(\omega_{c}+\Delta \omega\right) t+\delta\right)}^{v_{1}(t)}\}=m_{1}(t) \cos ((\Delta \omega) t+\delta)-m_{2}(t) \sin ((\Delta \omega) t+\delta) \\
& \text { (b): } \operatorname{LPF}\{\underbrace{x_{\mathrm{QAM}}(t) \sqrt{2} \sin \left(\left(\omega_{c}+\Delta \omega\right) t+\delta\right.}_{v_{2}(t)})\}=m_{1}(t) \sin ((\Delta \omega) t+\delta)+m_{2}(t) \cos ((\Delta \omega) t+\delta) .
\end{aligned}
$$

(a) Let $\tilde{m}_{1}(t)=\operatorname{LPF}\left\{v_{1}(t)\right\}$.

See Remark \#1.
Then, by the product-to-sum formulas,

$$
\begin{aligned}
v_{1}(t)= & \left.m_{1}(t) \cos \left(\left(\omega_{c}+\Delta \omega\right) t+\delta\right)+m_{1}(t) \cos (\Delta \omega) t+\delta\right) \\
& +m_{2}(t) \sin \left(\left(2 \omega_{c}+\Delta \omega\right) t+\delta\right)+m_{2}(t) \sin (-(\Delta \omega) t-\delta) \\
\hat{m}_{1}(t)= & \left.m_{1}(t) \cos (\Delta \omega) t+\delta\right)-m_{2}(t) \sin ((\Delta \omega) t+\delta)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) Let } \hat{m}_{2}(t)=L P F\left\{v_{2}(t)\right\} . \\
& \text { Then, by the product-to-sum formulas, } \\
& v_{2}(t)= \\
& +m_{1}(t) \sin \left(\left(2 \omega \omega_{c}+\Delta \omega\right) t+\delta\right)+m_{1}(t) \sin ((\Delta \omega) t+\delta) \\
& +m_{2}(t) \cos ((\Delta \omega) t+\delta)-m_{2}(t) \cos ((20+\Delta \omega+\Delta+\delta) \\
& \hat{m}_{2}(t)=
\end{aligned}
$$

Problem 7. As in Problem 2, in QAM system, the transmitted signal is of the form

$$
x_{\mathrm{QAM}}(t)=m_{1}(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)+m_{2}(t) \sqrt{2} \sin \left(2 \pi f_{c} t\right) .
$$

We want to express x_{QAM} in the form

$$
x_{\mathrm{QAM}}(t)=\sqrt{2} E(t) \cos \left(2 \pi f_{c} t+\phi(t)\right)
$$

where $E(t) \geq 0$ and $\phi(t) \in\left(-180^{\circ}, 180^{\circ}\right]$.
In each part below, we consider different examples of the messages $m_{1}(t)$ and $m_{2}(t)$.
(a) Suppose $m_{1}(t)=\cos (2 \pi B t)$ and $m_{2}(t)=\sin (2 \pi B t)$ where $0<B \ll f_{c}$. Find $E(t)$ and $\phi(t)$. Hint: $\cos \alpha \cos \beta+\sin \alpha \sin \beta=\cos (\alpha-\beta) \leftarrow$ See Remark \#2.

$$
\begin{aligned}
& x_{Q A M}(t)=\sqrt{2} \cos (2 \pi B t) \cos \left(2 \pi f_{C} t\right)+\sqrt{2} \sin (2 \pi B t) \sin \left(2 \pi f_{C} t\right) \\
& E(t)=\sqrt{\sqrt{2}} \cos (2 \pi f_{c} t \underbrace{-2 \pi B t}_{=\phi(t)}) \text { No N } \quad \text { int stop here because the question needs } \\
& \phi(t) \in\left(-180^{\circ} ; 180^{\circ}\right] \text {. } \\
& \text { It is clear that when } t \text { is large, "-mst" will exceed }-150^{\circ} \text {. } \\
& \text { We may refer to " }-2 \pi \text { ot" as the "unwr a ppd phase: } \\
& \text { Adding/subtracting appropriate multiple of } 360^{\circ} \text { will bring "- } 2 \pi \text { bt" } \\
& \text { into the }\left(-180^{\circ}, 180^{\circ}\right] \text { range. } \\
& \text { Martematically, this could be done via } \\
& \phi(t)=\left(\left(-2 \pi \Delta t+180^{\circ}\right) \bmod 360^{\circ}\right)-180^{\circ} . \\
& \text { We may refer to this os the "wrapped phase: }
\end{aligned}
$$

(b) Suppose $m_{1}(t)=\cos (2 \pi B t)$ and $m_{2}(t)=2 \sin (2 \pi B t)$. Let $f_{c}=5$ and $B=2$. Use MATLAB to plot the corresponding $E(t)$ and $\phi(t)$ from $t=0$ to $t=5$ [sec]. (Hint: the function angle or atan2 will be helpful here.)

The plot for part (a):

 to find $E(t)$ and $\phi(t)$ respectively. Alternatively, we can find $E(t)$ from

$$
\begin{aligned}
E(t) & =\sqrt{m_{1}^{2}(t)+m_{2}^{2}(t)}=\sqrt{\cos ^{2}(2 \pi B t)+(2 \sin (2 \pi B t))^{2}}=\sqrt{\cos ^{2} A+4\left(1-\cos ^{2} A+4 \sin A\right.} \\
& =\sqrt{4-3 \cos ^{2} A} \quad A=2 \pi B t \\
& =\sqrt{4-3\left(\frac{1}{2}(1+\cos (2 A))\right)}=\sqrt{\frac{5}{2}-\frac{3}{2} \cos (2 A)}=\sqrt{2}-\frac{3}{2} \cos (2 \pi(2 \sin +\sqrt{2})
\end{aligned}
$$

$$
\begin{aligned}
& \text { The command aten } 2\left(m_{1}(t),-m_{2}(t)\right) \\
& \text { can also be used to find } \varnothing(t) \text {. }
\end{aligned}
$$

Caution: Because the question wert $\phi(t) \in\left(-180^{\circ}, 180^{\circ}\right)$, dun't forget to convert the unit from "radians" to "degrees".

Problem 8. Consider a complex-valued signal $x(t)$ whose Fourier transform is $X(f)$.
(a) Find and simplify the Fourier transform of $x^{*}(t)$.

Let $y(t)=e^{*}(t)$. We want to find $Y(f)$.
First, recall that $x(f)=\int^{\infty} \infty(t) e^{j 2 \pi f t} d t$.
Hence, $Y(f)=\int_{-\infty}^{\infty} e^{*}(t) e^{j 2 \pi f t} d t=(\underbrace{\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t}_{x(-f)})^{*}=(x(-f))^{*}=x^{*}(-f)$
(b) Find and simplify the Fourier transform of $\operatorname{Re}\{x(t)\}$.

- Hint: $x(t)+x^{*}(t)=$?

$$
\text { Let } y(t)=\operatorname{Re}\{a(t)\} \text {. }
$$

$$
\text { From the hint, we first note that } x(t)+x^{*}(t)=2 \operatorname{Re}\{\alpha(t)\} \text {. }
$$

$$
\text { Hence, } y(t)=\operatorname{Re}\{x(t)\}=\frac{1}{2}\left(x(t)+x^{*}(t)\right) \text { and }
$$

$$
Y(f)=\frac{1}{2}\left(X(f)+\mp\left\{x^{*}(t)\right\}\right)=\frac{1}{2}\left(X(f)+x_{\text {From part (a) }}^{\left.x^{*}(f)\right)}\right.
$$

See Remark \#3.

Problem 9. Consider a (complex-valued) baseband signal $x_{b}(t) \stackrel{\mathcal{F}-1}{\stackrel{\mathcal{F}}{\rightleftharpoons}} X_{b}(f)$ which is band-limited to B, i.e., $\left|X_{b}(f)\right|=0$ for $|f|>B$. We also assume that $f_{c} \gg B$.
(a) The passband signal $x_{p}(t)$ is given by

$$
x_{p}(t)=\sqrt{2} \operatorname{Re}\left\{e^{j 2 \pi f_{c} t} x_{b}(t)\right\} .
$$

Find and simplify the Fourier transform of $x_{p}(t)$.
By the freq. - shift property of Fourier transform,
$\underbrace{e^{j 2 \pi f_{c} t} \alpha_{b}(t)} \xrightarrow{\rightrightarrows} x_{b}\left(f-f_{c}\right)$
call this $g(t)$.
Then, $G(t)=x_{b}\left(t-t_{c}\right)$ and

$$
a_{p}(t)=\sqrt{2} \operatorname{Re}\{g(t)\} .
$$

Recall, from the previous problem 6 that $\operatorname{Re}\{g(t)\} \xrightarrow{\}} \frac{1}{2}\left(G(f)+G^{*}(-f)\right)$.
Hence, $x_{p}(f)=\sqrt{2} \times \frac{1}{2}\left(G(t)+G^{*}(-f)\right)=\frac{1}{\sqrt{2}}\left(x_{b}\left(f-f_{c}\right)+x_{b}^{*}\left(-f-f_{c}\right)\right)$
(b) Find and simplify

$$
\operatorname{LPF}\{\sqrt{2}(\underbrace{\sqrt{2} \operatorname{Re}\left\{e^{j 2 \pi f_{c} t} x_{b}(t)\right\}}_{x_{p}(t)}) e^{-j 2 \pi f_{c} t}\} .
$$

Assume that the frequency response of the LPF is given by

$$
H_{L P}(f)= \begin{cases}1, & |f| \leq B \\ 0, & \text { otherwise } .\end{cases}
$$

By the freq.-shift property of $F T$,

$$
\begin{aligned}
x_{p}(t) e^{-j 2 \pi f_{c} t} \stackrel{\mathcal{F}}{\longrightarrow} x_{p}\left(f-\left(-f_{c}\right)\right) & =x_{p}\left(f+f_{c}\right)=\frac{1}{\sqrt{2}}\left(x_{b}\left(f+f_{c}-f_{c}\right)+x_{b}^{\lambda}\left(-\left(t+f_{c}\right)-f_{c}\right)\right. \\
& =\frac{1}{\sqrt{2}}\left(x_{b}(f)+x_{b}^{*}\left(-\left(f+2 f_{c}\right)\right)\right.
\end{aligned}
$$

Therefore, $\sqrt{2} a_{p}(t) e^{-j 2 \pi f_{c} t} \xrightarrow{\mathcal{F}} x_{b}(f)+x_{b}^{*}\left(-\left(f+2 f_{c}\right)\right)$

Remark \#1 (for Q6)

Recall the product-to-sum formula: $\cos A \cos \theta=\frac{1}{2}(\cos (A+B)+\cos (A-B))$.
In this question, we will need two move formulas involving products of
Again, we will use the Euler's identity:

$$
\begin{aligned}
& \sin A=\frac{1}{2 j}\left(e^{j A}-e^{-j A}\right) \\
& \cos B=\frac{1}{2}\left(e^{j B}+e^{-j B}\right)
\end{aligned}
$$

Hence, $\quad \sin A \cos B=\frac{1}{4 j}\left(e^{j A}-e^{-j A}\right)\left(e^{j B}+e^{-j B}\right)=\frac{1}{4 j}\left(e^{j(A+\theta)}-e^{-j(A+\theta)}+e^{j(A-\theta)}-e^{-j(A-\theta)}\right)$

$$
=\frac{1}{4 j}(2 j \sin (A+B)+2 j \sin (A-B))=\frac{1}{2} \sin (A+B)+\frac{1}{2} \sin (A-B),
$$

and

$$
\sin A \sin B=\frac{1}{(2 j)^{2}}\left(e^{j A}-e^{-j A}\right)\left(e^{j \theta}-e^{-j B}\right)=\frac{1}{-4}\left(e^{j(A+\theta)}+e^{-j(A+\theta)}-e^{j(A-\theta)}-e^{-j(A-\theta)}\right)
$$

$$
=-\frac{1}{4}(2 \cos (A+B)-2 \cos (A-B))=\frac{1}{2}(\cos (A-B)-\cos (A+B))
$$

Remark \#2 (for Q7)
As usual, this trig. identity can be proved via the Euler's formula:

$$
\begin{aligned}
\cos A \cos B & =\left(\frac{e^{j A}+e^{-j A}}{2}\right) \times\left(\frac{e^{j B}+e^{-j B}}{2}\right)=\frac{1}{4}\left(e^{j(A+B)}+e^{j(A-B)}+e^{-j(A-B)}+e^{-j(A+B)}\right) \\
\sin A \sin B & =\left(\frac{e^{j A}-e^{-j A}}{2 j}\right) \times\left(\frac{e^{j B}-e^{-j B}}{2 j}\right)=-\frac{1}{4}\left(e^{j(A+B)}-e^{j(A-B)}-e^{-j(A-B)}+e^{-j(A+B)}\right) \\
\cos A \cos B+\sin A \sin B & =\frac{1}{4} \times 2\left(e^{j(A-B)}+e^{-j(A-B)}\right)=\cos (A-B)
\end{aligned}
$$

Remark \#3 (for Q8b)
(1) The expression for $Y(f)$ above is similar to $\operatorname{Re}\{x(f)\}$ but they are not the same.
compare:

$$
\begin{aligned}
\operatorname{Re}\{x(f)\} & =\frac{1}{2}\left(x(f)+x^{*}(t)\right) \text {. and } \\
Y(f)=\mathcal{F}\{\operatorname{Re}\{a(t)\}\} & =\frac{1}{2}\left(x(f)+x^{*}(-f)\right) .
\end{aligned}
$$

(2) When $x(t)$ is real-valued,

$$
\begin{aligned}
& y(t)=\operatorname{Re}\{x(t)\}=x(t), \text { and } \\
& Y(f)=\zeta\{y(t)\}=F\{x(t)\}=x(t)
\end{aligned}
$$

Let's check whether $Y(f)=X(f)$ if we use our derived expression for $Y(f)$. Recall that for real-valued $x(t)$,

$$
x(-f)=x^{*}(f)
$$

So, $Y(f)=\frac{1}{2}\left(X(f)+X^{*}(-f)\right)=\frac{1}{2}\left(X(t)+\left(X^{*}(f)\right)^{*}\right)=X(t)$.
(3) Let's try another check.

Because $y(t)$ is defined as $\operatorname{Re}\{a(t)\}$, we know that $y(t)$ will always be real-valued.
Hence, it must also satisfy the conjugate symmetry property:

$$
Y(-f)=Y^{*}(f)
$$

so, let's try plugging "Of " into our expression for $Y(f)$:

$$
Y(f)=\frac{1}{2}\left(X(f)+X^{*}(-t)\right)
$$

This gives

$$
Y(-f)=\frac{1}{2}\left(x(-f)+x^{*}(f)\right)^{\downarrow}
$$

of course,

$$
Y^{*}(f)=\frac{1}{2}\left(x^{*}(f)+x(-f)\right)
$$

Therefore, $Y(-f)=Y^{*}(f)$ as expected.

