MW 4 - Due: Not Due
 Solution

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. Consider the DSB-SC modem with no channel impairment shown in Figure 4.1. Suppose that the message is band-limited to $B=3 \mathrm{kHz}$ and that $f_{c}=100 \mathrm{kHz}$.

Figure 4.1: DSB-SC modem with no channel impairment
(a) Specify the frequency response $H_{L P}(f)$ of the LPF so that $\hat{m}(t)=m(t)$. $M(f)$ is assumed to be bond-limited to $B=3 \mathrm{kHz}$. Therefore, $M(f)=0$ for $|f|>3 k H z$:

$$
\begin{aligned}
& \begin{array}{c}
y(t)=x(t) \quad x(t)=m(t) \times 3 \cos \left(2 \pi f_{c} t\right) \\
v(t)=y(t) \times \cos \left(2 \pi f_{c} t\right)=x(t)=\cos \left(2 \pi f_{c} t\right) \stackrel{1}{=} m m(t) \cos ^{2}\left(2 \pi f_{c} t\right)=3 m(t) \times \frac{1}{2}\left(1+\cos \left(2 \pi\left(2 f_{c}\right) t\right)\right)
\end{array} \\
& =\frac{3}{2} m(t)+\frac{3}{2} m(t) \cos \left(2 \pi\left(2 f_{c}\right) t\right) \\
& V(f)=\frac{3}{2} M(f)+\frac{3}{4} M\left(f-2 f_{c}\right)+\frac{3}{4} M\left(f+2 f_{c}\right) \text {. } \\
& \text { Here, } f_{c}=100 \mathrm{kHz} \\
& \text { Given the picture of }|m(f)| \text { above, } \\
& \text { we now draw the corresponding }|V(f)| \text { : }
\end{aligned}
$$

To eliminate the terms $\frac{3}{4} M\left(f-2 f_{c}\right)$ and $\frac{3}{4} M\left(f+2 f_{c}\right)$, we set $H_{L p}(f)=0$ for $|f|>200 k-3 k=197 k H z$.
To allow $\frac{3}{2} M(f)$ to pass through, we set $H_{L P}(f)=c$ for $|f|<3 k H z$ for some constant c. With such $H_{L p}(f)$, we get $\hat{m}(t)=c \times \frac{3}{2} m(t)$.
Because we need $\hat{m}(t)=m(t)$,
we have to set $\frac{3}{2} c=1 \Rightarrow c=\frac{2}{3}$.
$H_{L p}(f)= \begin{cases}\frac{2}{3}, & |f| \leqslant 3 k H z, \\ 0, & |f| \geqslant 197 k H z, \\ \text { any, } & \text { otherwise. }\end{cases}$

An example would be $H_{L p}(f)=\left\{\begin{array}{lll}2 / 3, & \mid f 1 \leqslant 100 \mathrm{kHz}, \prod_{-100}^{T V / 3} \\ 0, & \text { otherwise }\end{array}\right.$
(b) Suppose the impluse response $h_{L P}(t)$ of the LPF is of the form $\alpha \operatorname{sinc}(\beta t)$. Find the constants α and β such that $\hat{m}(t)=m(t)$.

Observation:

The frequency of the sine wave in the since function fives the boundaries of the rectangular function in another domain.
period $=\frac{2 \pi}{\beta}$
So, period $=\frac{2 \pi}{\beta}$

width $=2 f_{0}$
$\frac{1}{\text { width }}=\frac{\text { period }}{2}=\frac{\pi}{10}$
cot the
rectangular pulse) $\longrightarrow f_{0}=\frac{\beta}{2 \pi}$
Area $=h_{\text {Lp }}(0)=\alpha$
height x $2 f_{0}=\alpha$

$$
\begin{aligned}
& \text { height }=\frac{\alpha}{2 f_{0}}=\frac{\alpha}{2 \times \frac{\beta}{2 \pi}}=\pi \frac{\alpha}{\beta} \\
& \text { the gain of the LPF }
\end{aligned}
$$

From the previous part, we need $3 \leqslant f_{0}<197 \mathrm{kHz}$.

$$
\text { gain }=\frac{2}{3} \Rightarrow \pi \frac{a}{B}=\frac{2}{3} \Rightarrow \alpha=\frac{2 \beta}{3 \pi} \text {. }
$$

so, first we choose fo. Then, we have $\beta=2 \pi f_{0}$ and $\alpha=\frac{2 \beta}{3 \pi}$.
An example would be $f_{0}=100 \mathrm{kHz} \Rightarrow \beta=2 \times 10^{5} \pi \mathrm{rad} / \mathrm{s}$ and $\alpha=\frac{2}{3 \pi} \times 2 \times 10^{5} \frac{1}{3}=\frac{4}{3} \times 10^{5}$
Alternatively, one may wee $f_{0}=B=3 \mathrm{kHz}$. Then, $\beta=2 \pi f_{0}=2 \pi \times 3 \mathrm{k}=6 \times 10^{3} \pi \mathrm{rad} / \mathrm{s}$

$$
a=\frac{2}{3 \pi} B=\frac{2}{3 \pi} \times 8^{2} \times 10^{3} \pi=4000 .
$$

Problem 2. Consider the two signals $s_{1}(t)$ and $s_{2}(t)$ shown in Figure 4.2. Note that V and T_{b} are some positive constants. Your answers should be given in terms of them.
(a) Find the energy in each signal.

$$
\left.\begin{array}{l}
E_{D_{1}}=\int_{-\infty}^{\infty}\left|D_{1}(t)\right|^{2} d t=\int_{0}^{T_{b}} v^{2} d t=v^{2} T_{b} . \\
E_{A_{2}}=\int_{-\infty}^{\infty}\left|A_{2}(t)\right|^{2} d t=\int_{0}^{T_{b}} v^{2} d t=v^{2} T_{b} .
\end{array}\right\} \text { same (total) energy }
$$

Figure 4.2: Signal set for Question 2
(b) Are they energy signals?

Because V and T_{b} are positive constants, we know that $V^{2} T_{b}$ is positive and finite. Therefore, $0<E_{A_{1}}, E_{S_{2}}<\infty$. Hence, both Δ_{1} and Δ_{2} are energy signals \Rightarrow Yes
(c) Are they power signals?

No. Because they are energy signals, they can not be power signals.
(d) Find the (average) power in each signal.

```
All energy signals have O (average) power.
```

[See the comment 1 at the end]
(e) Are the two signals $s_{1}(t)$ and $s_{2}(t)$ orthogonal?

$$
\begin{aligned}
& \left\langle A_{1}, S_{2}\right\rangle=\int_{-\infty}^{\infty} s_{1}(t) S_{2}(t) d t=\int_{0}^{T_{b} / 2} v * v d t+\int_{T_{b} / 2}^{T_{b}}(-v) *(v) d t=v^{2} \frac{T_{b}}{2}-v^{2} \frac{T_{b}}{2}=0 . \\
& \text { Because }\left\langle S_{1}, A_{2}\right\rangle=0 \text {, we know that } S_{1} \text { and } s_{2} \text { are orthogonal. }
\end{aligned}
$$

Problem 3. (Power Calculation) For each of the following signals $g(t)$, find (i) its caresponding power $\left.P_{g}=\left.\langle | g(t)\right|^{2}\right\rangle$, (ii) the power $\left.P_{x}=\left.\langle | x(t)\right|^{2}\right\rangle$ of $x(t)=g(t) \cos (10 t)$, and (iii) the power $\left.P_{y}=\left.\langle | y(t)\right|^{2}\right\rangle$ of $y(t)=g(t) \cos (50 t)$
(a) $g(t)=3 \cos \left(10 t+30^{\circ}\right)$.

$$
\begin{gathered}
\text { Assume } f_{0} \neq 0 \quad A=3 . \\
(a \cdot i) g(t)=A \cos \left(2 \pi f_{0} t+\theta\right) \Longrightarrow P_{g}=\frac{|A|^{2}}{2} \xlongequal{\Rightarrow} P_{g}=\frac{|3|^{2}}{2}=\frac{9}{2}=4.5 .
\end{gathered}
$$

> product-to-sum formula a constant
(a.ii) $x(t)=g(t) \cos (10 t)=\left(3 \cos \left(10 t+30^{\circ}\right)\right)(\cos (10 t))=\frac{\downarrow}{2}\left(\cos \left(20 t+30^{\circ}\right)+\cos \left(30^{\circ}\right)\right)$
comment 3
$P_{r e} \downarrow\left(\frac{3}{2}\right)^{2}\left(\frac{1}{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}\right)=\frac{9}{4}\left(\frac{1}{2}+\frac{3}{4}\right)=\frac{9}{4}\left(\frac{5}{4}\right)=\frac{45}{16} \approx 2.813$
[See comment 2 and comment 4 at the end]
product-to-sum formula
(a .iii) $y(t)=g(t) \cos (50 t)=\left(3 \cos \left(10 t+30^{\circ}\right)(\cos (50 t)) \stackrel{\frac{3}{2}}{2}\left(\cos \left(60 t+30^{\circ}\right)+\cos \left(40 t-30^{\circ}\right)\right.\right.$
$P_{y}=\left(\frac{3}{2}\right)^{2}\left(\frac{1}{2}+\frac{1}{2}\right)=\frac{9}{4} \times 1=\frac{9}{4} \quad$ different freq.
[See comment 5 at the end]
[See comment 6 at the end]
(b) $g(t)=3 \cos \left(10 t+30^{\circ}\right)+4 \cos \left(10 t+120^{\circ}\right)$. (Hint: First, use phasor form to combine the two components into one sinusoid.)
(bi) $\begin{aligned} g(t) & =3 \cos \left(10 t+30^{\circ}\right)+4 \cos \left(10 t+120^{\circ}\right)=\operatorname{Re}\{(\underbrace{3}_{\approx 0.5981+4.9641 j \approx\left(50^{\circ}+4 \angle 120^{\circ}\right.}) e^{j 10 t}\} \\ & =5 \cos \left(10 t+83.13^{\circ}\right)\end{aligned}$
Note that we do not need the phase 83.13° to calculate the average power. Also, we con get the magnitude " 5 " simply by noticing the 90°

$$
P_{g}=5^{2} \times \frac{1}{2}=\frac{29}{2}=12.5
$$ difference between $3 \angle 30^{\circ}$ and $4 \angle 120^{\circ}$.

(b.ii) $x(t)=g(t) \cos (10 t)=5 \cos \left(10 t+83.13^{\circ}\right) \cos (10 t)$

$$
\begin{aligned}
& =\frac{5}{2}\left(\cos \left(20 t+83.13^{\circ}\right)+\cos \left(83.13^{\circ}\right)\right) \\
P_{x} & =\left(\frac{5}{2}\right)^{2}\left(\frac{1}{2}+\cos ^{2}\left(83.13^{\circ}\right)\right)=\frac{25}{8}\left(1+2 \cos ^{2}\left(83.13^{\circ}\right) \approx 3.214\right.
\end{aligned}
$$

(b.iii) Note that $G(f)$ is still at $\pm \frac{10}{2 \pi}$ as in part (a.iii).

Therefore, $G\left(f-\frac{50}{2 \pi}\right)$ and $G\left(f+\frac{50}{2 \pi}\right)$ still do not overlap in the freq. domain.

$$
P_{y}=\frac{1}{2} P_{g}=\frac{25}{4}=6.25 \quad 4-4
$$

(c) $g(t)=3 \cos (10 t)+3 \cos \left(10 t+120^{\circ}\right)+3 \cos \left(10 t+240^{\circ}\right)$
(c.i) Look at the three components of $g(t)$ in their phasor representation.
we have $3 \angle 0^{\circ}+3 \angle 120^{\circ}+3 \angle 240^{\circ}=0$
\uparrow
clear when you
draw the three vectors
Therefore, $g(t)=0$. Hence, $P_{g}=0$.
(c.ii) $x(t)=0 \Rightarrow P_{x}=0$
(c.iii) $y(t)=0 \Rightarrow P_{y}=0$

Extra Questions

Here are some optional questions for those who want more practice.

Problem 4. This question starts with a square-modulator for DSB-SC. Then, the use of the square-operation block is further explored on the receiver side of the system. [Doerschuk, 2008, Cornell ECE 320]
(a) Let $x(t)=A_{c} m(t)$ where $m(t) \underset{\mathcal{F}-1}{\mathcal{F}} M(f)$ is bandlimited to B, i.e., $|M(f)|=0$ for $|f|>B$. Consider the block diagram shown in Figure 4.3.

Figure 4.3: Block diagram for Problem 4a
Assume $f_{c} \gg B$ and

$$
H_{B P}(f)= \begin{cases}1, & \left|f-f_{c}\right| \leq B \\ 1, & \left|f+f_{c}\right| \leq B \\ 0, & \text { otherwise }\end{cases}
$$

The block labeled " $\{\cdot\}^{2}$ " has output $v(t)$ that is the square of its input $u(t)$:

$$
v(t)=u^{2}(t)
$$

Find $y(t)$.

$$
\begin{aligned}
x(t) & =A_{c} m(t) \xrightarrow{F} x(t)=A_{c} M(t) \text {. so, } x(f) \text { is also band limited to } B . \\
u(t) & =x(t)+\sqrt{2} \cos \left(\omega_{c} t\right) \omega_{c}=2 \pi f_{c} \\
v(t) & =\mu^{2}(t)=\left(x(t)+\sqrt{2} \cos \left(\omega_{c} t\right)\right)^{2}=x^{2}(t)+2 \sqrt{2} a(t) \cos \left(\omega_{c} t\right)+\underbrace{2 \cos ^{2}\left(\omega_{c} t\right)}_{\swarrow} \\
& =1+x^{2}(t)+2 \sqrt{2} x(t) \cos \left(2 \pi f_{c} t\right)+\cos \left(2 \pi\left(2 f_{c}\right) t\right) \quad
\end{aligned}
$$

Note 1: $x^{2}(t) \xrightarrow{y} x(t) * x(f)$. So, $e^{2}(t)$ is band limited to $2 B$. Because $f_{c} \gg B$, the spectrum of $e^{2}(t)$ will not be in the passbond of the BPF which centers around f_{C}.

Note 2: The term cos $\left(2 \omega_{c} t\right)$ is at frequency 2 "fe which again is outside the passbend of the BPF.

Therefore, only the term $2 \sqrt{2} e(t) \cos \left(2 \pi f_{t} t\right)$ will survive the BPF.
$y(t)=\operatorname{BPF}\{v(t)\}=2 \sqrt{2} \alpha(t) \cos \omega_{c} t=2 \sqrt{2} A_{c} m(t) \cos \omega_{c} t$
[See comment 7 at the end]
(b) The block diagram in part (a) provides a nice implementation of a modulator because it may be easier to build a squarer than to build a multiplier. Based on the successful use of a squaring operation in the modulator, we decide to use the same squaring operation in the demodulator. Let

$$
x(t)=A_{c} m(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)
$$

where $m(t) \underset{\mathcal{F}^{-1}}{\mathcal{F}} M(f)$ is bandlimited to B, i.e., $|M(f)|=0$ for $|f|>B$. Again, assume $f_{c} \gg B$ Consider the block diagram shown in Figure 4.4.

Figure 4.4: Block diagram for Problem ab

Use

$$
H_{L P}(f)= \begin{cases}1, & |f| \leq B \\ 0, & \text { otherwise }\end{cases}
$$

Find $y^{I}(t)$. Does this block diagram work as a demodulator; that is, is $y^{I}(t)$ proportonal to $m(t)$?

$$
\begin{aligned}
& v(t)=\left(x(t)+\sqrt{2} \cos \left(\omega_{c}(t)\right)^{2}=2 \cos ^{2}\left(\omega_{c} t\right)\left(A_{c} m(t)+1\right)^{2}\right.
\end{aligned}
$$

$Y^{I}(t)=\operatorname{LPF}\{\forall(t)\}=\operatorname{LPF}\{g(t)\}=1+2 A_{c} m(t)+\operatorname{LPF}\left\{A_{c}^{2} m^{2}(t)\right\} \quad \begin{aligned} & \text { This term has spectrum } \\ & \text { beyond } I B \text {. }\end{aligned}$ $y^{I}(t)$ is not proportional to $m(t)$. so, only a portion of Hence, this block diagram does not work as a demodulator.
(c) Due to the failure in part (b), we have to think hard and it seems natural to consider also the block diagram with cos replaced by sin. Let

$$
x(t)=A_{c} m(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)
$$

where $m(t) \underset{\mathcal{F}-1}{\stackrel{\mathcal{F}}{\rightleftharpoons}} M(f)$ is bandlimited to B, i.e., $|M(f)|=0$ for $|f|>B$ as in part (b). Again, assume $f_{c} \gg B$ Consider the block diagram shown in Figure 4.5.
As in part (b), use

$$
H_{L P}(f)= \begin{cases}1, & |f| \leq B \\ 0, & \text { otherwise }\end{cases}
$$

Figure 4.5: Block diagram for Problem 4c
Find $y^{Q}(t)$.

$$
\begin{aligned}
& \text { Let } x(t)=A_{c} m(t) \sqrt{2} \cos \left(\omega_{c} t\right) \text { as in part (b). } \\
& v(t)=\left(x(t)+\sqrt{2} \sin \left(\omega_{c} t\right)\right)^{2}=2\left(A_{c} m(t) \cos \left(\omega_{c} t\right)+\sin \left(\omega_{c} t\right)\right)^{2} \\
& =2(A_{c}^{2} m^{2}(t) \cos ^{2}\left(\omega_{c} t\right)+A_{c} m(t) \underbrace{\cos \left(\omega_{c} t\right) \sin \left(\omega_{c} t\right)}+\sin ^{2}\left(\omega_{c} t\right)) \\
& =2(A_{c}^{2} m^{2}(t) \cos ^{2}\left(\omega_{c} t\right)+\underbrace{\sin ^{2}\left(\omega_{c} t\right)}_{=1-\cos ^{2} \omega_{c} t})+A_{c} m(t) \sin \left(2 \omega_{c} t\right) \\
& =2\left(\left(A_{c}^{2} m^{2}(t)-1\right) \cos ^{2}\left(\omega_{c} t\right)+1\right)+A_{c} m(t) \sin \left(2 \omega_{c} t\right) \\
& =2+\left(A_{c}^{2} m^{2}(t)-1\right)\left(1+\cos \left(2 \omega_{c}^{\text {ref }}(t)\right)+A_{c} m(t) \sin \left(2 \omega_{c} t\right)\right. \\
& y^{Q}(t)=2+\operatorname{LPF}\left\{A_{c}^{2} m^{2}(t)\right\}-1=\operatorname{LPF}\left\{A_{c}^{2} m^{2}(t)\right\}+1 \\
& \uparrow \text { The output alone is far from being proportional to } m(t) \text {. } \\
& \text { So, this block diagram also does not work as a demodulator. }
\end{aligned}
$$

(d) Use the results from parts (b) and (c). Draw a block diagram of a successful DSB-SC demodulator using squaring operations instead of multipliers.

Problem 5 (Cube modulator). Consider the block diagram shown in Figure 4.6 where " $\{\cdot\}^{3 "}$ indicates a device whose output is the cube of its input.

Figure 4.6: Block diagram for Problem 5. Note the use of f_{0} instead of f_{c}.
Let $m(t) \underset{\mathcal{F}-1}{\mathcal{F}} M(f)$ be bandlimited to B, i.e., $|M(f)|=0$ for $|f|>B$.
(a) Plot an $H(f)$ that gives $z(t)=m(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)$. What is the gain in $H(f)$? What is the value of f_{c} ? Notice that the frequency of the cosine is f_{0} not f_{c}. You are supposed to determine f_{c} in terms of f_{0}.

$$
y(t)=\left(m(t)+\sqrt{2} \cos \left(2 \pi f_{0} t\right)\right)^{3}=m^{3}(t)+3 m^{2}(t) \sqrt{2} \cos \omega_{0} t+\underbrace{3 m(t) 2 \cos ^{2} \omega_{0} t}+(\underbrace{(\sqrt{2})^{3} \cos ^{3}\left(\omega_{0} t\right)}
$$

$$
\left.\left.\left\{\begin{aligned}
2 \cos ^{2}(\theta) & =1+\cos (2 \theta) \\
2 \cos ^{3}(\theta) & =\cos \theta+\cos \theta \cos 2 \theta \\
& =\cos \theta+\frac{1}{2} \cos \theta+\frac{1}{2} \cos 3 \theta \\
& =\frac{3}{2} \cos \theta+\frac{1}{2} \cos 3 \theta
\end{aligned}\right\} \quad \begin{array}{l}
=3 m(t)\left(1+\cos 2 \omega_{0} t\right) \\
\end{array}\right\}=3 m(t)+3 m(t) \cos \left(2 \omega_{0} t\right)\right)
$$

We want $z(t)=m(t) \sqrt{2} \cos \left(\omega_{c} t\right)$. We see that the only term ir $y(t)$ that has the form "constant $\times m \times \cos ()^{\prime \prime}$ is $3 m(t) \cos \left(2 \omega_{0} t\right)$.
Therefore, we will center the passband to cover this part and adjust the gain to make the output
In particular, we need to make $2 f_{0}=f_{c}$. so, $f_{0}=f_{c} / 2$.

(b) Let $M(f)$ be

$$
M(f)= \begin{cases}1, & |f| \leq B \\ 0, & \text { otherwise }\end{cases}
$$

(i) Plot $X(f)$.

(ii) Plot $Y(f)$. Hint:

$$
M(f) * M(f)= \begin{cases}2 B-|f|, & |f| \leq 2 B \\ 0, & \text { otherwise }\end{cases}
$$

Do not attempt to make an accurate plot or calculation for the Fourier transform
of $(a)^{3}(t)$. we have

without trying to make on accurate
plot for $m^{3} L t y$ we know that it is
band limited to $3 B$.

(iii) For your filter of part (a), plot $z(t)$.
$z(t)=m(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)$. Therefore, to plot $z(t)$, first we need to find $m(t)$.

If you want to know
the shape of $M(f) \equiv M(f)$ w $M(f)$,
you con try plotting it in MATLAB
using this code:
$\omega=\operatorname{ones}(1,10)$;
$u_{2}=\operatorname{conv}(\mu, \mu) ;$
$u_{3}=\operatorname{conv}\left(\mu_{3}, \omega_{0}\right) ;$ plot $(\infty 3)$
$z(t)$ is the above since. function multiplied by $\sqrt{2} \cos \left(2 \pi f_{c} t\right)$. Because $f_{c} \gg B$, we know that $\frac{1}{B} \gg \frac{1}{f_{c}}$
period of sine inside sine Lperiod of cosine So, the \mid since function becomes the envelope of the cosine courier.

[Doerschuk, 2008, Cornell ECE 320]

Problem 6. Consider a signal $g(t)$. Recall that $|G(f)|^{2}$ is called the energy spectral density of $g(t)$. Integrating the energy spectral density over all frequency gives the signal's total energy. Furthermore, the energy contained in the frequency band I can be found from the integral $\int_{I}|G(f)|^{2} d f$ where the integration is over the frequencies in band I. In particular, if the band is simply an interval of frequency from f_{1} to f_{2}, then the energy contained in this band is given by

$$
\begin{equation*}
\int_{f_{1}}^{f_{2}}|G(f)|^{2} d f \tag{4.1}
\end{equation*}
$$

In this problem, assume

$$
g(t)=1[-1 \leq t \leq 1] .
$$

(a) Find the (total) energy of $g(t)$.

$$
\begin{aligned}
& E_{g}=\left.\int_{-\infty}^{\infty} \lg (t)\right|^{2} d t=\int_{-\infty}^{\infty}(1[-1 \leqslant t \leqslant 1])^{2} d t=\int_{-1}^{\infty} 1 d t=2 . \\
& \text { Remark: We can also try to find } E_{g} \text { from the freq. domain. } \\
& \text { In part (b), we will show that } G(f)=2 \operatorname{sinc}(2 \pi f) \text {. } \\
& \begin{aligned}
\text { Therefore, } & =\int_{-\infty}^{\infty}|g(t)|^{2} d t=\int_{-\infty}^{\infty}|G(f)|^{2} d f=\int_{-\infty}^{\infty}(2 \operatorname{sinc}(2 \pi f))^{2} d f
\end{aligned} \\
& \text { Parseval's theorem } \\
& \begin{array}{l}
\mu=2 \pi f \\
d \mu=2 \pi d f=\frac{1}{2 \pi} \times 4 \int_{-\infty}^{\infty} \operatorname{sinc}^{2}(\mu) d \mu=\frac{\sqrt{E} \times 2.44 .6}{2 \pi} \times 4 \times \pi=2
\end{array}
\end{aligned}
$$

(b) Figure 4.7 define the main lobe of a sinc pulse. It is well-known that the main lobe of the sine function contains about 90% of its total energy. Check this fact by first

Figure 4.7: Main lobe of a sinc pulse
computing the energy contained in the frequency band occupied by the main lobe and then compare with your answer from part (a).
Hint: Find the zeros of the main lope. This give f_{1} and f_{2}. Now, we can apply (4.1).
MATLAB or similar tools can then be used to numerically evaluate the integral.
First, we need $G(f)$.
Recall

Here, $\tau=2$. So, $\quad G(f)=2 \operatorname{sinc}(2 \pi f)$
The main lobe occupies an interval of frequency from $f_{1}=-\frac{1}{\tau}=-\frac{1}{2}$ to $f_{2}=+\frac{1}{\tau}=+\frac{1}{2}$. So, the energy contained in the band $B=\left[f_{1}, f_{2}\right]$ is given by $\int_{-V / 2}^{1 / 2}(2 \operatorname{sinc}(2 \pi f))^{2} d f x_{L_{\text {MATLAB }}}^{1.8056}$ compared with the answer from part (as, this is $\approx 90 \%$ of the total energy.
(c) Suppose we want to include more energy by considering wider frequency band. Let this band be the interval $I=\left[-f_{0}, f_{0}\right]$. Find the minimum value of f_{0} that allows the band to capture at least 99% of the total energy in $g(t)$.

Using MATLAB, we can look at the fraction of energy as a function of f_{0}. We found that at around $f_{0} \approx 5.1$, the fraction begins to exceed 99%.

All energy signals have 0 average power
Consider $\quad P_{g}=\lim _{T \rightarrow \infty} \int_{-T / 2}^{T / 2}|g(t)|^{2} d t$.
Note that $|g(t)|^{2}$ is always nonnegative. Therefore,

$$
\begin{aligned}
& \left.0 \leqslant \int_{-T / 2}^{T / 2} \mid g(t)\right)^{2} d t \leqslant \int_{-\infty}^{\infty}|g(t)|^{2} d t=E_{g}^{L} \begin{array}{l}
g(t) \text { is an energy signal; } \\
\text { so this is a finite } \\
\text { number. }
\end{array} \\
& 0 \leqslant \frac{1}{T} \int_{-T / 2}|g(t)|^{2} d t \leqslant \frac{1}{T} E_{g}
\end{aligned}
$$

$$
\begin{array}{lll}
-T / 2 & \downarrow_{T \rightarrow \infty} \downarrow^{T} \\
\leqslant & P_{9} \leqslant 0
\end{array}
$$

Therefore, $\quad P_{g}=0$.

Comment 2: Additional comment for Q3.a.ii:
Note that although $x(t)=g(t) \cos \left(2 \pi f_{0} t\right)$, we con't use $P_{\pi}=\frac{1}{2} P_{g}$ because $G\left(f-f_{0}\right)$ and $G\left(f+f_{0}\right)$ overlap in the frequency domain.

 overlapping © $f=0$.

Comment 3: A property that we frequently use in power calculation
Let $v(t)=a u(t)$. Then

$$
P_{v}=\langle | v^{2}(t)| \rangle=\langle | a^{2} u^{2}(t)| \rangle=|a|^{2}\left\langle\mu^{2}(t)\right\rangle=|a|^{2} P_{\mu}
$$

Comment 4: More comment for Q3.a.ii:
In general, for $e(t)=a \cos \left(2 \pi f_{0} t+\theta\right) \cos \left(2 \pi f_{0} t+\varnothing\right)$, applying the product-to-sum formula gives

$$
x(t)=\frac{a}{2}\left(\cos \left(2 \pi\left(2 f_{0}\right) t+\theta+\phi\right)+\cos (\theta-\phi)\right)
$$

When $f_{0} \neq 0$, the two cosine components do not overlap in the frequency domain. Hence, the power of their sum is the same as the sum of their power.
Therefore, $p_{r}=\left|\frac{a}{2}\right|^{2}\left(\frac{1}{2}+\cos ^{2}(\theta-\varnothing)\right)$.
Here, $a=3, \theta=0, \phi=30^{\circ}$.
Therefore, $P_{\text {re }}=\left(\frac{3}{2}\right)^{2}\left(\frac{1}{2}+\cos ^{2}\left(30^{\circ}\right)\right)=\frac{9}{4}\left(\frac{1}{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}\right)=\frac{9}{4}\left(\frac{1}{2}+\frac{3}{4}\right)=\frac{45}{16}$
Comment 5: comment for Q3.a.iii:
Note that $P_{y}=\frac{1}{2} P_{g}$ because $G\left(f-\frac{50}{2 \pi}\right)$ and $G\left(f+\frac{50}{2 \pi}\right)$ do not overlap.

Comment 6: Alternative solution for Q3.a

$$
\begin{aligned}
(a . i) \quad g(t) & =3 \cos \left(10 t+30^{\circ}\right)=\frac{3}{2}\left(e^{j\left(10 t+30^{\circ}\right)}+e^{-j\left(10 t+30^{\circ}\right)}\right) \\
& =\frac{3}{2} e^{j 30^{\circ}} e^{j 10 t}+\frac{3}{2} e^{-j 30^{\circ}} e^{-j 10 t} \\
P_{g} & =\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}=2 \times \frac{9}{4}=\frac{9}{2}=4.5 \\
(a . i i) y(t) & =g(t) \cos (50 t)=\frac{3}{2}\left(e^{j 30^{\circ}} e^{j 10 t}+e^{-j 30^{\circ}} e^{-j 10 t}\right) \frac{1}{2}\left(e^{j 50 t}+e^{-j 50 t}\right) \\
& =\frac{3}{4}\left(e^{j 30^{\circ}} e^{j 60 t}+e^{-j 30^{\circ}} e^{j 40 t}+e^{j 30^{\circ}} e^{-j 40 t}+e^{-j 30^{\circ}} e^{-j 60 t}\right)
\end{aligned}
$$

All of the complex exponential functions have distinct frequencies.

$$
\begin{aligned}
P_{y} & =\left(\frac{3}{4}\right)^{2}\left(1^{2}+1^{2}+1^{2}+1^{2}\right)=\frac{9}{16} \times 4=\frac{9}{4} \times 2.25 \\
(a . i i x) y(t) & =g(t) \cos (50 t)=\frac{3}{2}\left(e^{j 30^{\circ}} e^{j 10 t}+e^{-j 30^{\circ}} e^{-j 10 t}\right) \frac{1}{2}\left(e^{j 30 t}+e^{-j 50 t}\right) \\
& =\frac{3}{4}\left(e^{j 30^{\circ}} e^{j 60 t}+e^{-j 30^{\circ}} e^{j 40 t}+e^{j 30^{\circ}} e^{-j 40 t}+e^{-j 30^{\circ}} e^{-j 60 t}\right)
\end{aligned}
$$

All of the complex exponential functions have distinct frequencies.

$$
P_{y}=\left(\frac{3}{4}\right)^{2}\left(1^{2}+1^{2}+1^{2}+1^{2}\right)=\frac{9}{16} \times 4=\frac{9}{4} \times 2.25
$$

Comment 7: Remark for Q4.a

More generally, if the gain of the filter is " g^{e} and the amplitude of the carrier is c, then $y(t)=2 c \times g \times($ input signal $) \times \cos \left(\omega_{c} t\right)$
Here, $c=\sqrt{2}, g=1$, and input signal $=A_{c} m(t)$.
Therefore, $y(t)=2 \sqrt{2} A_{c} m(t) \cos \left(\omega_{c} t\right)$.

