HW 1 - Due: Sep 1, 4 PM Solution

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 5 pages.
(b) (1 pt) Work and write your answers directly on these provided sheets (not on other blank sheets) of paper). Hard-copies are distributed in class.
(c) (1 pt) Write your first name and the last three digits of your student ID on the upperright corner of this page.
(d) $(8 \mathrm{pt})$ Try to solve all problems.
(e) Late submission will be heavily penalized.

Problem 1. In class, we have seen how to use the Euler's formula to show that

$$
\cos ^{2} x=\frac{1}{2}(\cos (2 x)+1) .
$$

For this question, apply similar technique to show that

$$
\begin{aligned}
& \cos A \cos B=\frac{1}{2}(\cos (A+B)+\cos (A-B)) . \\
& \cos A \cos B=\frac{1}{2}\left(e^{j A}+e^{-j A}\right) \times \frac{1}{2}\left(e^{j B}+e^{-j B}\right) \\
& \begin{array}{l}
=(e^{\left(e^{j A}+e^{-j A}\right)\left(e^{j B}\right.}+\underbrace{\left.+e^{-j B}\right) \times \frac{1}{4}}_{2 \cos (A+B)}+\underbrace{e^{j(A+B)}+e^{-j(A+B)}}_{2 \cos (A-B)}+e^{j(A-B)}+e^{-j(A-B)}) \frac{1}{4}
\end{array} \\
& =\frac{1}{2}(\cos (A+B)+\cos (A-B)) \\
& \text { Steps: } \\
& \text { (1) Replace cos and } \mathrm{sin} \\
& \text { with complex exponential } \\
& \text { functions. } \\
& \text { (2) } \\
& \text { Simplify or rearrange } \\
& \text { the expression } \\
& \text { (3) Convert back to } \cos \text { and } \sin
\end{aligned}
$$

First, we convert the given expressions into complex exponential functions. Then, we use the fact that $e^{j 2 \pi f o t}$ in the time domain corresponds to the delta function at $f=f_{0}$ in the frequency domain

Problem 2. Plot (by hand) the Fourier transforms of the following signals
(a) $\cos \underbrace{20 \pi t)}_{L}=\frac{e^{j A}+e^{-j A}}{2}=\frac{1}{2} e^{j A}+\frac{1}{2} e^{-j A}=\frac{1}{2} e^{j 2 \pi(10) t}+\frac{1}{2} e^{j 2 \pi(-10) t}$.

So, the plot of its Fourier transform is

Alternatively, one may simply remember that the Fourier transform of $\cos \left(2 \pi f_{0} t\right)$ is simply delta functions of size $\frac{1}{2}$ at f_{0} and $-f_{0}$.
(b) $\cos (20 \pi t)+\cos (40 \pi t)$

For $\cos (\underbrace{40 \pi t})$, the corresponding frequencies are $\underbrace{20} \mathrm{~Hz}$.

$$
\begin{aligned}
2 \pi f_{0} t & =40 \pi t \\
f_{0} & =20
\end{aligned}
$$

So, the plot of the Fourier transform of $\cos (20 \pi t)+\cos (40 \pi t)$ is
(c) $(\cos (20 \pi t))^{2}$

$$
\begin{aligned}
& (\cos (\underbrace{20 \pi t}))^{2}=(\cos A)^{2}=\left(\frac{1}{2}\left(e^{j A}+e^{-j A}\right)\right)^{2}=\frac{1}{4}\left(e^{2 j A}+2+e^{-2 j A}\right) \\
& A=20 \pi t \\
& =2 \pi(10) t
\end{aligned} \quad=\frac{1}{4} e^{j 2 \pi(20) t}+\frac{1}{2} \underbrace{e^{j 2 \pi(0) t}+\frac{1}{4} e^{j 2 \pi(-20) t}}_{1}
$$

So, the plot of its Fourier transform is

(d) $\cos (\underbrace{20 \pi t}) \times \cos (\underbrace{40 \pi t})=\cos (A) \cos (B)=\frac{1}{2}\left(e^{j A}+e^{-j A}\right) \frac{1}{2}\left(e^{j B}+e^{-j B}\right)$

$$
\begin{aligned}
A & =20 \pi t \\
=2 \pi(10) t \quad B & =40 \pi t \\
& =2 \pi(20) t
\end{aligned}=\frac{1}{4}\left(e^{j(A+B)}+e^{j(-A+B)}+e^{j(A-B)}+e^{j(-A-B)}\right)
$$

So, the plot of its Fourier transform is

$$
\begin{array}{cc|cc}
\uparrow^{1 / 4} & \uparrow^{1 / 4} & \uparrow^{1 / 4} & \uparrow^{1 / 4} \\
-30 & -10 & 10 & 30
\end{array}
$$

(e) $(\cos (20 \pi t))^{2} \times \cos (40 \pi t)=(\underbrace{\frac{1}{4} e^{j 2 \pi(20) t}+\frac{1}{2}+\frac{1}{4} e^{j 2 \pi(-20) t}}_{\text {from part (c) }}) \times\left(\frac{1}{2} e^{j 2 \pi(20) t}+\frac{1}{2} e^{j 2 \pi(-200 t}\right)$

Problem 3. Evaluate the following integrals:
(a) First, recall that $\int_{A} \delta(t) d t=\left\{\begin{array}{ll}1, & 0 \in A, \\ 0, & 0 \notin A .\end{array}\right.$ In particular, $\int_{-\infty}^{\infty} \delta(t) d t=1$.
(i) $\int_{-\infty}^{\infty} 2 \delta(t) d t=2 \int_{-\infty}^{\infty} \delta(t) d t=2 \times 1=2$.
(ii) $\int^{2} 4 \delta(t-1) d t$ Consider the function $4 \delta(t-1)$ graphically.

(b) $\int_{-\infty}^{\infty} \delta(t) \underbrace{e^{-j 2 \pi f t} d t=\int_{-\infty}^{\infty} g(t) \delta(t) d t=g(0)=\left.e^{-j 2 \pi f t}\right|_{t=0}=e^{0}=1, ~(t)}_{\text {sifting property }}$
(c)

$$
\text { (i) } \int_{-\infty}^{\infty} \delta(t-2) \underbrace{\sin (\pi t)} d t=\int_{-\infty}^{\infty} g(t) \delta(t-2) d t \stackrel{\downarrow}{=} g(2)=\left.\sin (\pi t)\right|_{t=2}=\sin (2 \pi)=0
$$

(iii) $\int_{\begin{array}{c}\text { Note that the " } x \text { " here is just a dummy variable. } \\ \text { It takes the role of " } \mathrm{t} \text { in our formula. }\end{array}}^{\infty} e^{(x-1)} \cos \left(\frac{\pi}{2}(x-5)\right) \delta(x-3) d x=\int_{-\infty}^{\infty} g(t) \delta(x-3) d x=g(3)=\left.e^{x-1} \cos \left(\frac{\pi}{2}(x-5)\right)\right|_{e=3}$
(d) This pert has the delta function in the form $\delta(T-t)$.
we use the "ehange of variables" technique to evaluate the integral: $\int_{-\infty}^{\infty} g(t) \delta(T-t) d t=-\int_{\infty}^{\infty} g(T-\tau) \delta(\tau) d \tau$
(i) $\int_{-\infty}^{\infty}\left(t^{3}+4\right) \delta(1-t) d t=t^{3}+\left.4\right|_{t=1}=1^{3}+4=1+4=5$
(ii) $\int_{-\infty}^{\infty} g(2-t) \delta(3-t) d t=\left.g(2-t)\right|_{t=3}=g(2-3)=g(-1)$

(e) $\int_{-2}^{2} \delta(2 t) d t$

Figure 1.1: Problem 4
(a) Carefully sketch the following signals:
(i) $y_{1}(t)=g(-t)$
(ii) $y_{2}(t)=g(t+6)$
(a)
(i) Recall the time inversion (time reversal) operation $g(-t)$ is the mirrow image of $g(t)$ about the vertical axis.
(ii) Recall the time shifting operation:
$g(t-T)$ represents $g(t)$ time-shifted by T.
If T is positive, the shift is to the right (delay).
If T is negative, the shift is to the left (by $|T|$).
Here, $y_{2}(t)=g(t+6)=g(t-(-6))$.
So, $y_{2}(t)$ is simply $g(t)$ shifted to the left by 6 time units.
(iii) Recall the time scaling operation:
$g(a t)$ is $g(t)$ compressed in time by the factor a. $L_{\text {for }} a>1$
So, $y_{3}(t)=g(3 t)$ is simply $g(t)$ compressed in time by a factor of 3 .
(iv) The tricky one would be $g(6-t)$.

There are two ways to think about it
(1)

$$
\begin{aligned}
& g(t) \xrightarrow{\text { time inversion }} \mathrm{g}(-t) \xrightarrow{\text { time shift, } T=6} \mathrm{~g}(-(t-6)) \\
& \text { mirror image } \\
& \text { about the } \\
& \text { vertical axis } \\
& \text { (2) } g(t) \xrightarrow{\text { time shift, } T=-6} g(t+6) \xrightarrow{\text { time inversion }} g(-t+6)
\end{aligned}
$$

shift to the left by 6
(iii) $y_{3}(t)=g(3 t)$
(iv) $y_{4}(t)=g(6-t)$.

(b) Find the "net" area under the graph for each of the signals in the previous part. (Mathematically, this is equivalent to integrating each signal from $-\infty$ to $+\infty$. However, directly calculating and combining positive and negative areas from the plots should be easier.) First, note that, for any constant m, c,

$$
\begin{aligned}
& \text { Now, for us, } \quad \int_{-\infty}^{\infty} g(t) d t=-\underbrace{-\left(\frac{1}{2} \times 1 \times \frac{\sqrt{2}^{6}}{}\right)^{12-6}}+\left(\frac{1}{2} \times \frac{1}{2} \times 12\right)^{24-12}=-3+3=0 \text {. } \\
& 1-5 \\
& \text { Therefore, } \int_{-\infty}^{\infty} g(m t+c) d t=0 \text { for any } m, c \text {. }
\end{aligned}
$$

