Q1 Nyquist's Criterion
(a) In the time domain:

$$
\begin{aligned}
& p(t)= \begin{cases}1, & t=0 \\
0, & t= \\
& T 2 T, I 3 T, \ldots\end{cases} \\
& \\
& \frac{1}{T}=\text { symbol dur }
\end{aligned}
$$

$$
\text { symbol "duration" } \rightarrow T \text { does not }
$$

"interval" necessarily equal the pulse duration (the pulse may not even be time-limited.) measured in symbols per second or baud
(b) In the freq. domain.

$$
\sum_{k=-\infty}^{\infty} P\left(f-\frac{k}{T}\right) \equiv T
$$

Reminder: A pulse $p(t)$ is called a Nyquist pulse iff it satisfies

Q2 Nyquist Pulses

Monday, September 17, 2012 4:20 PM
General strategy (recipe): Let the end of the given interval be $\left(\frac{1}{2 T}\right.$.)

Then, set the symbol duration to be $T=\frac{1}{2 f_{0}}$
Our pulse will be band-limited to $\left(\frac{1}{T}\right)$
Recall that to check whether a pulse is a Nyquist pulse,
we check whether $\sum_{k=-}^{\infty} P\left(f-\frac{k}{T}\right) \equiv T$.

$$
k=-\infty \bigcap_{p(f)} \text { is replicated every } \frac{1}{T} \text {. }
$$

Now consider 4 intervals:

Note that when $P(f)$ is copied to $\frac{1}{T}$, its content in region (1) will show up in region (3)

Therefore, when we add $P(f)$ in region (1) and $P(f)$ in region (3), we must have T.
In other words, $P(f)$ in region (1) can be found by $T-P(f)$
in region (3).
(hinted)
The suggested symmetry in $P(f)$ allow us to find

$$
\begin{aligned}
& P(f) \text { in region (2) by flipping } P(f) \text { in region (3) horizontally } \\
& \text { and } \\
& P(f) \text { in region (4) by flipping } P(f) \text { in region (1) horizontally. }
\end{aligned}
$$

Remark. We don't went $P(f)$ to be non-zero outside region (1)-(4) becavie when we apply $\sum_{k=-\infty}^{\infty} p\left(f-\frac{k}{T}\right)$, if $p(f)$ is too wide, we will have to deal with many overlapping replicas.

We don't went $P(f)$ to be zero inside region (4) (and hance (1)) became we may need it to "cancel" the region (3) value to get the Σ to be T.
This is why we set the provided portion of $P(f)$ to be in region (3).
For this question, we have $f_{0}=1$. Therefore, we will choose

$$
T=\frac{1}{2 f_{0}}=0.5 . \quad \Rightarrow \frac{1}{T}=2 \text { and } \frac{1}{2 T}=1 .
$$

The four regions under consideration are (1) $f \in[-2,-1)$
(2) $f \in[-1,0)$
(3) $f \in[0,1)$
(4) $f \in[1,2]$

The question specifies $P(f)$ in region (3) as discussed above.
we will use the strategy described above to find $P(f)$ which is band-limited to $\frac{1}{T}$.
(a)

Note that in region (3), $P(f) \equiv T$ already. Therefore, we need nothing from region (1); in other words, $f(f) \equiv 0$ in region (1)
The values in region (2) and (4) are from the symmetry in $P(f)$.

(There is no need to check whether $P(f)$ satisfies the Nyquist criterion again because it is constructed by our recipe above.)
(b) In this part, the value of $P(f)$ in region (3) is 0.25 ;
so, we will set the value in region (1) to be $T-0.25=0.5-0.25=0.25$.
The values in region (2) and (4) are from the symmetry in $P(f)$.

(c)

As before, the value in region (1) is T-region (3) $=0.5-7^{0.5}=T_{0}^{0.25}=0.25$.
(d)

Q3 Raised Cosine Pulse

Monday, September 17, 2012 7:51 PM

$$
\alpha=0.3, \quad T=1
$$

(a)

$$
\begin{aligned}
& \frac{1}{2 T}=\frac{1}{2} \\
& \frac{\alpha}{T}=\frac{0.3}{1}=0.3 \\
& \frac{\alpha}{2 T}=\frac{0.3}{2}=0.15
\end{aligned}
$$

(b) The raised cosine pulse is a Nygurst pulse.

Therefore,

$$
p(t)= \begin{cases}1, & t=0 \\ 0, & t= \pm T, \pm 2 T, \pm 3 T, \ldots\end{cases}
$$

Here, $T=1$.
Hence, $\quad p(t)= \begin{cases}1, & t=0 \\ 0, & t= \pm 1, \pm 2, \pm 3, \ldots\end{cases}$
In particular, $p(2)=0$
(c) Note that $P\left(\frac{1}{2 T}\right)=\frac{T}{2}$. Here, $T=1$. Hence, $P\left(\frac{1}{2}\right)=\frac{1}{2}$
(d) From part (a), we've seen that $P(t)=1$ for $f \in[-0.35,035]$. Therefore, $P(0.3)=1$.
(e) We magnify the plot in part (a) for clarity

$$
\begin{array}{r}
\text { This is the "raised" } \\
\Rightarrow P(0.4)=\frac{1}{2}\left(1+\cos \left(\pi \times \frac{0.05}{0.3}\right)\right)
\end{array}
$$

$f: 0 \underset{\frac{\alpha}{T}=0.3}{\longleftrightarrow} \quad$ (half a cycle)

$$
\begin{aligned}
& =\frac{1}{2}(1+\cos (\pi / 6)) \\
& =\frac{2+\sqrt{3}}{4} \approx 0.933
\end{aligned}
$$

Alternatively, although not recommended, we can find the value of $P(0.4)$ simply by plugging in the formula for the raised cosine given in lecture. The value of P in the cosine part is given by $\frac{T}{2}\left(1+\cos \left(\frac{\pi T}{\alpha}\left(1+1-\frac{1-\alpha}{2 T}\right)\right)\right)$.

In this part, $f=0.4, \alpha=0.3$, and $T=1$.
Hence,

$$
P(0.4)=\frac{1}{2}(1+\cos (\frac{\pi \times 1}{03}(\underbrace{04-\frac{0.7}{2}}_{0.05})))=\frac{1}{2}\left(1+\cos \left(\frac{\pi}{6}\right)\right) \leftarrow \text { same as above. }
$$

Note: $\cos \left(\frac{\pi}{6}\right) \approx 0.866$

$$
\Lambda_{\text {this is in radians (not degrees) }}
$$

If you plug $\frac{\pi}{6}$ into the cos function when your calculator is in deg mode, you would get the incorrect number $\cos \left(\frac{\pi}{6}^{\circ}\right) \approx 1$ (0.999958244)
(a) The formula for the raised cosine pulse in the time domain is

$$
P_{R C}(t ; \alpha)=\frac{\cos \left(\alpha \pi \frac{t}{T}\right)}{1-\left(2 \alpha \frac{t}{T}\right)^{2}} \frac{\sin \left(\pi \frac{t}{T}\right)}{\pi \frac{t}{T}}
$$

At $t=\frac{T}{2}$, we have $\frac{t}{T}=\frac{1}{2}$

$$
\begin{aligned}
p_{R C}\left(\frac{I}{2} ; \alpha\right) & =\frac{\cos \left(\alpha \frac{\pi}{2}\right)}{1-\alpha^{2}} \frac{\sin \frac{\pi}{2}}{\frac{\pi}{2}} \rightarrow 1 \\
& =\frac{2}{\pi} \times \frac{\cos \left(\alpha \frac{\pi}{2}\right)}{1-\alpha^{2}}
\end{aligned}
$$

(b) MATLAB plot:

(c) Note that when $\alpha=0, P_{R C}\left(\frac{I}{2} ; a\right)=\frac{2}{\pi} \approx 0.6366$

$$
\text { As } \alpha \rightarrow 1, p_{R C}\left(\frac{\pi}{2} ; \alpha\right) \rightarrow \frac{2}{\pi} \times\left.\frac{\frac{\pi}{2}\left(-\sin \left(\alpha \frac{\pi}{2}\right)\right)}{-2 \alpha}\right|_{\alpha=1}=\frac{1}{2}
$$

