Textbook: [C&C] A. Bruce Carlson and Paul B. Crilly, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, McGraw-Hill, 2010, 5th International edition. Call No. TK5102.5 C3 2010. ISBN: 978-007-126332-0.

Topics	[C&C]
1. Introduction to communication systems	
a. Problem statement	P. 2 (second-to-last paragraph)
b. C. E. Shannon	P. 23
c. Elements of communication systems	P. 3-5
2. Frequency-Domain Analysis	
a. Sinusoids or sinusoidal waveforms	P. 29
b. Phasors	P. 29-30
c. Euler's formula	P. 29
d. Definition of Fourier transform and the	P. 44-45
corresponding inverse	
i. f and omega	
e. "net area" property	P. 45
f. Indicator function	
g. Sinc function	P. 37
	In [C&C], normalized version is used.
h. Rectangular Pulse and Sinc	P. 45-46
i. Unit impulse or Dirac delta function	P. 68-71, 76-77
j. Conjugate symmetry	P. 45
k. Time Delay	P. 55-56
I. Frequency Translation and Modulation	P. 58-59
m. Superposition	P. 55
n. Scale Change and Reciprocal spreading	P. 46, 56
o. Duality theorem	P. 52-53
p. Convolution	P. 62-64
q. Convolution theorem	P. 65-66
r. Parseval's theorem and Energy spectral	P. 50-52
density	
s. Cosine pulse	P. 59-60
t. Triangular pulse	P. 61-62
u. Uncertainty principle	
v. Band-limiting and time-limiting	P. 128-129
3. Modulation and Communication Channels	
a. Definition	P. 162 (First paragraph)
b. Multiplication by cosine	P. 164
c. Message bandwidth	P. 163
	[C&C] uses W instead of B.
d. Modulation Benefits and Applications	p. 8-11
i. EM spectrum	
ii. Unlicensed bands	
iii. Atmospheric absorption	
iv. National radio quiet zone and the	
electrosensitives	
e. Impulse response, transfer function	P. 94, 96-98
f. Distortionless Transmission	P. 105
g. Signal distortion in transmission	P. 106-109

	h.	Memoryless nonlinear distortion		P. 114
i. Multipath distortion			ath distortion	Last paragraph on P 13
				Figure 1.3-2 on P 14
				Example 3.2-2 P 113
4.	Amplit	ude/Line	ear Modulation	P. 162
				Second part of Section 4.2
	a.	DSB-SC	Cmodulation	
		i.	Synchronous Detection by the product	First paragraph on p 195
			demodulator	
	b.	Fourie	r series	In [C&C], the graphical representation
				is primarily done by using
				1) one-sided or positive-freq. line
				spectra
				and
				2) two-sided line spectra
				where the coefficients of the Fourier
				series are used directly as height of the
				lines.
				However, for us, we use the delta
				function to unify all the representation
				using Fourier transform.
		i.	Exponential Fourier series	P 35-36
		ii.	Fourier transform of periodic signal	P. 72
			based on the coefficients in Fourier	
			series	
		<u> </u>	Parseval's Power Theorem	P 42
	С.	Classic	al DSB-SC Modulators	
	<u> </u>	i.	Square Modulator	P. 180-181
d. Energy and Power			and Power	
		i.	Normalized signal energy	P. 43
		ii.	Rayleigh's Energy Theorem and the	P. 50-52
			inner-product version	
			lime average	P. 34
		iv.	Inner-product	/ // // .
		V.	Normalized power	P. 34 (no "d" though)
		vi.	Power of phasor	P. 42
		vii.	Power of sinusoid	P. 34
		viii.	Parseval's power theorem	P. 42 (as super position of average
L				power)
		ix.	Power signal	P. 34
		х.	Energy Signal	P. 44
	e.	Instant	aneous frequency	P. 208-209