Quiz 2 Solution

Suppose $x_{Q A M}(t)=m_{1}(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)+m_{2}(t) \sqrt{2} \sin \left(2 \pi f_{c} t\right)$.
$m_{1}(t)$ and $m_{2}(t)$ are plotted below.
We want to express $x_{\text {RAM }}(t)$ in the form

$$
x_{Q A M}(t)=E(t) \cos \left(2 \pi f_{c} t+\theta(t)\right)
$$

where $E(t) \geqslant 0$ and $\theta(t) \in\left(-180^{\circ}, 180^{\circ}\right]$.
Plot $E(t)$ and $\theta(t)$.

m_{1}	m_{2}	$m_{1}-j m_{2}$	$\sqrt{2}\left(m_{1}-j m_{2}\right)$
1	1	$1-j=\sqrt{2} \angle-45^{\circ}$	$2<-45^{\circ}$
1	-1	$1+j=\sqrt{2}<45^{\circ}$	$2<45^{\circ}$
-1	1	$-1-j=\sqrt{2} \angle-135^{\circ}$	$2<-135^{\circ}$
-1	-1	$-1+j=\sqrt{2} \angle 135^{\circ}$	$2<135^{\circ}$

Quiz 2 Solution \leftarrow when $\sqrt{2}$ is factored out in the expression

Suppose $x_{Q A M}(t)=m_{1}(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)+m_{2}(t) \sqrt{2} \sin \left(2 \pi f_{c} t\right)$.
$m_{1}(t)$ and $m_{2}(t)$ are plotted below.
We want to express $x_{\text {RAM }}(t)$ in the form

$$
x_{Q A M}(t)=E(t) \sqrt{2} \cos \left(2 \pi f_{c} t+\theta(t)\right)
$$

where $E(t) \geqslant 0$ and $\theta(t) \in\left(-180^{\circ}, 180^{\circ}\right]$.
Plot $E(t)$ and $\theta(t)$.

m_{1}	m_{2}	$m_{1}-j m_{2}$
1	1	$1-j=\sqrt{2}<-45^{\circ}$
1	-1	$1+j=\sqrt{2}<45^{\circ}$
-1	1	$-1-j=\sqrt{2}<-135^{\circ}$
-1	-1	$-1+j=\sqrt{2}<135^{\circ}$

ECS 332: Quiz 3 Solution
Instructions

1. Separate into groups of no more than three persons.
2. The group cannot be the same as your former group.
3. Only one submission is needed for each group.
4. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID
Prapun	

5. Do not panic.

Consider the message $m(t)$ plotted below. Sketch (one example for each type) the corresponding transmitted $\mathrm{x}_{\mathrm{AM}}(\mathrm{t}), \mathrm{x}_{\mathrm{FM}}(\mathrm{t})$, and $\mathrm{X}_{\mathrm{PM}}(\mathrm{t})$. Make sure that the important "features" can be seen clearly.

Instructions

1. Separate into groups of no more than three persons.
2. The group cannot be the same as your former group.
3. Only one submission is needed for each group.
4. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Name	ID
Prapun	555

5. Do not panic.
6. Suppose we input $\cos (2 \pi(X X X X) t)$ into plotspect with sampling rat $f=200$ samples $/ \mathrm{sec}$. Find the perceived frequency (the freq. that n ? sect sees) when
a) $\mathrm{XXXX}=2015$

b) $X X X X=$ the last four digit of the ID of a person in your group General recipe for $\cos \left(2 \pi f_{0} t\right)$:
To find the perceived freq., we will use the "folding technique": $\left\{\begin{array}{l}\text { see solution } \\ \text { of HW8 }\end{array}\right.$
i) Consider the window of freq. from 0 to f_{2}. for the
ii) start from 0 , increase the frees. to f_{0} Fold back at 0 and $\frac{f_{s}}{2}$ if necessary.
7. Suppose we input $e^{j(2 \pi(X X X X) t)}$ into plotspect with sampling rate $f_{s}=200$ samples $/ \mathrm{sec}$. Find the perceived frequency (the freq. that plotspect sees) when

b) $X X X X=$ the last four digit of the ID of a person in your group.

General recipe for $e^{j 2 \pi f_{0} t}$.
To find the "perceived" frequency, we will we the "tunneling technique":
$i)$ consider the window of freq. from $-\frac{f_{s}}{2}$ to $-\frac{f_{1}}{2}$.
ii) start from 0 .

If $f_{0}>0$, increase the frees. to f_{0} (going to the right)
See solutions
of HW8
for the

