HW 9 — Due: Not Due

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. State the Nyquist's (first) criterion for zero ISI

- (a) In the time domain.
- (b) In the frequency domain.

Problem 2. In each part below, a pulse P(f) is defined in the frequency domain from f = 0 to f = 1. Outside of [0, 1], your task is to assign value(s) to P(f) so that it becomes a Nyquist pulse. Of course, you will also need to specify the symbol interval T as well.

Hint: To avoid dealing with complex-valued P(f), you may assume that p(t) is real-valued and even; in which case P(f) is also real-valued and even.

- (a) Find a Nyquist pulse P(f) whose P(f) = 0.5 on [0, 1].
- (b) Find a Nyquist pulse P(f) whose P(f) = 0.25 on [0, 1].
- (c) Find a Nyquist pulse P(f) whose

$$P(f) = \begin{cases} 0.5, & 0 \le f < 0.5\\ 0.25, & 0.5 \le f \le 1 \end{cases}$$

(d) Find a Nyquist pulse P(f) whose

$$P(f) = \begin{cases} 0.5, & f \in [0, 0.25) \cup [0.5, 0.75) \\ 0.25, & f \in [0.25, 0.5) \cup [0.75, 1] \end{cases}$$

Problem 3. Consider a raised cosine pulse $p_{\rm RC}(t;\alpha)$ and its Fourier transform $P_{\rm RC}(f;\alpha)$. Assume the rolloff factor $\alpha = 0.3$ and the symbol "duration" T = 1.

- (a) Carefully sketch $P_{\rm RC}(f;\alpha)$.
- (b) Find $p_{\rm RC}(2;\alpha)$.
- (c) Find $P_{\rm RC}(0.5; \alpha)$.
- (d) Find $P_{\rm RC}(0.3; \alpha)$.

2015/1

(e) *Find $P_{\rm RC}(0.4; \alpha)$.

Remark: You should be able to solve this problem without referring to the "ugly" expression(s).

Problem 4. Consider a raised cosine pulse p(t) with rolloff factor α and symbol "duration" T.

- (a) Find p(T/2) as a function of α .
- (b) Use MATLAB to plot p(T/2) as a function of α .