Q1 Spectrum via MATLAB

a. You may recall that the Fourier transform of $1[|t| \le a]$ is given by $2a \operatorname{sinc}(2\pi fa)$.

Hence, $1[|t| \le 1] \xrightarrow{\mathcal{F}} 2\operatorname{sinc}(2\pi f)$.

Note that $g(t) = 1[0 \le t \le 2]$ is simply $1[|t| \le 1]$ time-shifted by 1. As we have discussed in class, time shifting does not change the magnitude of the spectrum. Hence, |G(f)| is the same as the magnitude of the Fourier transform of $1[|t| \le 1]$. Therefore,

$$|G(f)| = 2|\operatorname{sinc}(2\pi f)|$$
.

In the Figure (i) below, the theoretical expression above is plotted using the "x" marks on top of the provided plot from specrect.m. The marks match the theoretical plot.

b. See Figure (ii) above.

c.

$$S(f) = \int_{-\infty}^{\infty} s(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} e^{-t}u(t)e^{-j2\pi ft}dt = \int_{0}^{\infty} e^{-(1+j2\pi f)t}dt$$
$$= \frac{1}{-(1+j2\pi f)}e^{-(1+j2\pi f)t}\Big|_{t=0}^{\infty} = \frac{1}{1+j2\pi f}$$

|S(f)| is plotted in part (c) using the "x" marks on top of the plots from plotspec.m. They are virtually identical.

d. With variable "a" in the m-file set to 1, we have same result.

Q2 Cosine Pulses

Wednesday, July 18, 2012

The main purpose of this problem is to see the spectrum of the cosine pulse.

The pulses under consideration is of the form

$$p(t) = \begin{cases} \cos(2\pi f_0 t), & t_1 \le t \le t_2 \\ 0, & \text{otherwise.} \end{cases}$$

We note that plt) can be expressed as

$$\rho(t) = \cos(2\pi f_0 t) \times r(t)$$

where r(t) is the rectangular pulse on the time interval [t, t2].

Writing it in this form makes it clear that we may view p(t) as the modulated signal whose r(t) is the message (or the modulating signal).

In which case, we can now apply what we know about modulation:

In time domain, r(t) is multiplied by cos(277 fot).

VIn freqs. domain, R(f) is shifted to $\pm f_0$ (and scaled by $\frac{1}{2}$).

In particular,
$$P(f) = \frac{1}{2} \left(R(f - f_0) + R(f + f_0) \right)$$
.

So, the remaining task is to find R(f).

Recall that

$$\alpha(t) = \frac{1}{\tau} \Rightarrow f = \chi(f)$$

$$\frac{1}{\tau} \Rightarrow \frac{1}{\tau} \Rightarrow \frac{1}{\tau$$

Moreover, rlt) is the time-shifted version of the ext(t) above: $r(t) = ext(t - t + tilde{t})$

By the time-shift property, Recall that |R(F)| $R(+) = e \times (+)$ Recall that |R(F)|will be the same as |X(F)|

$$= e^{-j\pi f(t_1 + t_2)}$$

$$= e^{-j\pi f(t_1 + t_2)}$$

$$= (t_1 - t_1) \operatorname{sinc}(\pi f(t_1 - t_1))$$

With this, we can get the expression for P(+) from *.

Now, back to the question ...

(a)

(a.i)

(a.ii) Here, $f_0 = 5$, $t_1 = -1$, and $t_2 = 1$.

Therefore,
$$R(f) = 2 \operatorname{sinc}(2\pi f)$$

and
$$P(f) = \operatorname{sinc}(2\pi(f-5)) + \operatorname{sinc}(2\pi(f+5))$$

(a.iii)

(a) The question itself actually gives us one way to find the total energy:

$$\Xi = \int |G(f)|^2 df.$$

By the Parseval's theorem, we know that this is the same as

which is much easier to calculate.

For
$$g(t) = 1[-1 \le t \le 1]$$
,

the total energy is $\int (1[-1 \le t \le 1])^2 d^4$

$$= \int 1 dt = 2.$$

Alternatively, we can work directly with the integration in the frequency domain. To do this, we will first need to find G(f).

Recall that

Here, T=2. So, G(f)=2 sinc $(2\pi f)$ and

$$E = \int |G(f)|^2 df = \int_{-\infty}^{2} 2^{\sin 2} (2\pi f) df$$

4 $\int \operatorname{sinc}^2(\mu) \frac{1}{2\pi} d\mu = \frac{2}{\pi} \int \operatorname{sinc}(\mu) d\mu$ I same as the energy found in the time domain (but the integration is considerably more difficult). (b) If you have not found OLT) in part (a), this part require you to do so as the first step. However, we've already done this as an alternative solution for part (a). So, we will use that for this The main lope occupies an interval of frequency from $f_1 = -\frac{1}{7} = -\frac{1}{2}$ to $f_2 = +\frac{1}{7} = +\frac{1}{2}$. So the energy contained in the band B=[f1,f2] is given by $\int \left(2 \operatorname{sinc}(2 \pi f)\right)^2 df \approx 1.8056$ $\int \left(2 \operatorname{MATLAB}\right)^2 df \approx 1.8056$ **WolframAlpha** computational. wolfram Alpha integrate ((2*sinc(2*pi*f))^2) from -1/2 to 1/2 $\int_{-\frac{1}{2}}^{\frac{1}{2}} (2 \operatorname{sinc}(2 \pi f))^2 df = \frac{4 \operatorname{Si}(2 \pi)}{\pi} \approx \underline{1.80565}$ The fraction of energy contained in the main lope is $\frac{1.8056}{2}$ $\approx 0.9028 = 90.28\%$ the answer from part (a) (c) Using MATLAB, we can look at the fraction of energy as a function of for We found that at around for 5.1 , the fraction begins to

1	4		•
exceed	<u> </u>		

Wednesday, July 18, 2012

One requirement for a linear system is that

"proportional changes in the input give the same proportional changes in the output."

In particular, if &= 1 corresponds to y=12,

then &=1×2 should correspond to y=12×2 =24.

(Doubling the input cause the output to double.)

In our case, we have y = 2x +10.

So, if e=1, y = 2×1 +10 = 12.

For linear system, when &= 2, we expect y to be 24.

However, by its definition, when $\alpha = 2$, our system gives $y = 2 \times 2 + 10 = 14 \neq 24.$

Therefore, the system is not linear.

The delay is caused by the propagation time of the signal.

Recall that the amount of time delay can be calculated from

Therefore, one possible du tance value is

possible distance value is

distance =
$$C \times delay = C \times \frac{\theta}{2\pi f_c} = \frac{\theta}{2\pi}$$

$$= 2 \times 10^8 \times \frac{\pi/y_2}{2\pi} = \frac{100}{28} \approx 3.57 \text{ m}$$

The calculation above gives only one possible dutance value because the cosine is periodic.

In particular,

$$\cos(2\pi f_c t - \theta) = \cos(2\pi f_c t - \theta + 2\pi k)$$
 for any integer k.

So, what we should do is to consider

$$\cos\left(2\pi f_c t - \theta + 2\pi k\right) = \cos\left(2\pi f_c \left(t - \frac{\theta}{2\pi f_c} + \frac{k}{f_c}\right)\right)$$

In which case, the amount of time delay could be

$\frac{B}{2\pi f_c} - \frac{k}{f_c}$ for any integer k.				
$2\pi f_c \qquad f_c$				
The corresponding possible values of distance are				
$d = \frac{c}{f_c} \left(\frac{\theta}{2\pi} - k \right) = \lambda_c \left(\frac{\theta}{2\pi} - k \right)$				
Lyave leasth of the carrier.				
$d = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right) = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right)$ $= \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right) = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right)$ $= \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right) = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right)$ $= \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right) = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right)$ $= \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right) = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right)$ $= \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right) = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right)$ $= \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right) = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right)$ $= \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right) = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right)$ $= \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right) = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right)$ $= \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right) = \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} \right)$ $= \frac{1}{f_c} \left(\frac{1}{2\pi} - \frac{1}{k} $				
· ·				
The distance is a positive quantity.				
So, we need $k < \frac{\theta}{2\pi} = \frac{\pi/6}{2\pi} = \frac{1}{2}$.				
277 2次 12				
T le con le 0 -1 -2 -2				
In other words, k can be 0, -1, -2, -3,				
(\tilde{a})				
The value of k which comerponds to the minimum value of				
distance is k=0. The minimum distance is				
$d = \frac{C}{f_c} \frac{\partial}{\partial n} = 3.57 \text{ m}.$				
f, 217				
(ii) Other possible values of the distance are				
C (B)				
$d = \frac{c}{f_c} \left(\frac{b}{2\pi} - k \right) \text{for } k = -1, -2, -3, \dots$				
$=\frac{c}{f_{1}}\left(\frac{\partial}{2\pi}+n\right) \text{where} n=1,2,3,\dots$				
$f_{c}(2\pi)$				
= 3.57 + 42.86 n where n = 1,2,3,				

Q6 Tone Modulation

Thursday, July 14, 2011

Recall that the spectrum of cos(27 fot) is given by

So, the spectrum of mlt) is given by

(i.b) Recall that the spectrum of mlt) cos(211/ct) is given by

$$\frac{1}{2}M(f-f_c) + \frac{1}{2}M(f+f_c)$$

$$\frac{1}{2}Shift M(f) to the left by f_c$$

$$Shift M(f) to the right by f_c.$$

Part (ii) uses the same explanation as part (i).

(ii.a)
$$m(t) = 2\cos(1000\pi t) + \cos(2000\pi t)$$

= $2\cos(2\pi 500 t) + \cos(2\pi 1000 t)$

Thursday, July 14, 2011 2:22 PM

$$\times (/) = A_c M (/)$$

$$(a) \ \varkappa(t) = A_c \, m(t)$$

$$So, \, \chi(t) \text{ is also bend limited to } B.$$

$$u(t) = \varkappa(t) + \sqrt{2} \cos(\omega_c t)$$

$$w(t) = u^2(t) = (\varkappa(t) + \sqrt{2} \cos(\omega_c t))^2$$

$$= \varkappa^2(t) + 2\sqrt{2} \varkappa(t) \cos(\omega_c t) + 2\cos^2(\omega_c t)$$

$$BPF \qquad 1 + \cos(2\omega_c t)$$

BPF
$$1 + \cos(2\omega_c t)$$
 BPF $= (1 + \alpha^2(t)) + 2\sqrt{2} \alpha(t) \cos \omega_c t + \cos(2\omega_c t)$

Note1:
$$e(t) \xrightarrow{3} \chi(t) * \chi(f)$$

Because for BB, the spectrum of serts will not be in the passbond of the BPF which centers around for.

Note z: The term cos (zwct) is at frequency 2xfc which again is outside the passband.

y(t) = BPF
$$\{v(t)\}$$

= $2\sqrt{2} \propto (t) \cos w_c t$
= $2\sqrt{2} A_c m(t) \cos w_c t$

$$e(t) = A_{c}m(t)\sqrt{2}\cos(\omega_{c}t)$$

$$e(t) \rightarrow (t)\sqrt{2}\cos(\omega_{c}t)$$

From the above figure,

$$V(t) = \left(\varkappa(t) + \sqrt{z} \cos(\omega_{c}t)\right)^{2}$$

$$= 2\cos^{2}(\omega_{c}t) \left(A_{c}m(t) + 1\right)^{2}$$

$$= 1 + \cos(2\omega_{c}t) \left(A_{c}^{2}m^{2}(t) + 1 + 2A_{c}m(t)\right)$$

spectrum spectrum is from [-2B, 2B]

= glt) + glt) cos (2 wct)

Note: We know that g(t) is band limited to [-2B, 2B]
because all of its terms are band limited to [-2B, 2B].
So, only some parts of it will pass through the LPF.

Note 2: g(t) cos (2wct) is centered @ 2% and therefore will not pass thought the LPF.

$$y^{\Gamma}(t) = LPF \{w(t)\}$$

$$= LPF \{g(t)\}$$

$$= 1 + 2A_{cm}(t) + LPF \{A_{c}^{2}m^{2}(t)\}$$

This term has
spectrum beyond IN
So, only a partion of
it will pass through the LPF.

y (t) is not proportional to m(t).

Hence, this block diagram does not work as a demodulator.

(c) Assume

We then have

$$v(t) = \left(\frac{\partial e(t) + \sqrt{2} \sin(\omega_{c}t)}{2} \right)^{2}$$

$$= 2 \left(\frac{A_{c}m(t) \cos(\omega_{c}t) + \sin(\omega_{c}t)}{2} \right)^{2}$$

$$= 2 \left(\frac{A_{c}^{2}m^{2}(t) \cos(\omega_{c}t) + A_{c}m(t) \cos(\omega_{c}t) \sin(\omega_{c}t)}{2} \right)^{2}$$

$$+ \sin^{2}(\omega_{c}t) \right)$$

$$= 2 \left(\frac{A_{c}^{2}m^{2}(t) \cos^{2}(\omega_{c}t) + \sin^{2}(\omega_{c}t)}{2} \right)$$

 $+ A_{c}m(t) \sin(2\omega_{c}t)$ $= 2 \left((A_{c}^{2}m^{2}(t) - 1) \cos^{2}(\omega_{c}t) + 1 \right) + A_{c}m(t) \sin(2\omega_{c}t) \quad LPF$ $= 2 + (A_{c}^{2}m^{2}(t) - 1) \left(1 + \cos(2\omega_{c}t) \right) + A_{c}m(t) \sin(2\omega_{c}t)$

$$y^{Q}(t) = 2 + LIF \{A_{c}^{2}m^{2}(t)\} - 1$$

$$= LIF \{A_{c}^{2}m^{2}(t)\} + 1$$

(d) Observe that

$$y^{I}(t) - y^{Q}(t) = 2A_{c}m(t)$$
 which is the desired output of a successful DSB-SC demodulator.

Hence, the following block diagram would work:

Q8 Cube Modulator

Thursday, July 14, 2011

(a)
$$y(t) = \left(m(t) + \sqrt{z} \cos(2\pi f_0 t)\right)^3$$

 $= m^3(t) + 3m^2(t) \sqrt{2} \cos \omega_0 t + 3m(t) 2 \cos^2 \omega_0 t + (\sqrt{z}) \cos(\omega_0 t)$
 $= 3m(t) \left(1 + \cos z \omega_0 t\right)$
 $= 3m(t) + 3m(t) \cos(z \omega_0 t)$
 $= 2\cos^2(\theta) = 1 + \cos(2\theta)$
 $= \frac{3}{\sqrt{z}} \cos(\omega_0 t) + \frac{1}{\sqrt{z}} \cos(3\omega_0 t)$

$$\begin{cases} 2\cos^{2}(\theta) = 1 + \cos(2\theta) \\ 2\cos^{3}(\theta) = \cos\theta + \cos\theta\cos 2\theta \\ = \cos\theta + \frac{1}{2}\cos\theta + \frac{1}{2}\cos 3\theta \\ = \frac{3}{2}\cos\theta + \frac{1}{2}\cos\beta + \frac{1}{2}\cos\beta \end{cases}$$

We want 2(t)=m(t) /2 cos(w,t).

We see that the only term in y(t) that has the form

is 3 m(t) cos (2 wo t).

There fore me will center the passband to cover this part and adjust the gain to make the output the same as Z(t).

In particular,

We need to make $2f_0 = f_c$. So, $f_0 = f_0/2$.

Let
$$H_{BP}(f) = \begin{cases} c, & |f-f_c| \leq B \\ c, & |f+f_c| \leq B \end{cases}$$

o, otherwise

Then, z(t) = C x 3 m(t) cos (2wot)

We need
$$C \times 3 = \sqrt{2}$$
 \Rightarrow $C = \frac{\sqrt{2}}{3}$

The plot of H(+) is given below:

H(
$$\neq$$
) The gain is $\frac{\sqrt{2}}{3}$.

(b.i) $e(t) = m(t) + \sqrt{2} \cos(2\pi f_0 t)$

(b.ii)

From (a), we have

 $y(t) = m^{3}(t) + 3\sqrt{2} m^{2}(t) \cos(\omega_{0}t) + 3m(t) \cos(2\omega_{0}t) + \frac{4}{12} \cos(3\omega_{0}t)$

 $+\frac{3}{2}\cos(\omega_0 t)$

without trying to make and accurate plot for m3lt), we know that it is band limited to 3B.

If you want to know
the shape of M(f) * M(f) * M(f),
you can try plotting it in MATLAB
using this code:

m = ones (1,10); m2 = conv(m, m); m3 = conv(m2, m); plot (m3)

we know that

Z(t) is the above sinc. function multiplied by Ecos (217fct).

Because $f_c >> 0$, we know that

$$\frac{1}{B} \gg \frac{1}{t_c}$$

$$\frac{1}{t_c} \text{ period of } \cos.$$

so, the sinc function becomes the envelope of the cosine corrier.

Q9 Powered Cosine Modulator (12) First, we use the product to sum formula cos (A) cos (B) = 1 (cos (A+B) + cos (A-B)) to expand cos 3 se into sum of weighted cos (koc). $\cos^2 ne = \cos ne \cos ne = \frac{1}{2} \left(\cos \left(2ne\right) + \cos \left(0\right)\right) = \frac{1}{2} \left(\cos 2ne + 1\right)$ $\cos^3 \alpha c = \cos \alpha c \cos^2 \alpha c = \cos \alpha \left(\frac{1}{2} (\cos 2\alpha c + 1) \right)$ $=\frac{1}{2}\left(\cos\alpha\cos2\alpha + \cos\alpha\right) = \frac{1}{4}\cos3\alpha + \frac{3}{4}\cos\alpha$ $=\frac{1}{2}\left(\cos\left(3\alpha\right)+\cos\alpha\right)$ Plugging in & = wet = 211 fet, we get $\cos^3 \omega_c t = \frac{1}{4} \cos(3\omega_c t) + \frac{3}{4} \cos(\omega_c t),$ At point (c), we want kmit, coswet At point (b), we have mlt) cos 3 wet = 1 mlt) cos (swet) + 3 mlt) cos (wet). want this part don't want this part Any bandpass filter centered at Iwc will work.

In addition, the passband of this filter must be larger than 28.

Note that if the gain of the BPF is 1, then $k = \frac{3}{4}$.

(b)

(b.1) Let æb(t) be tre signal at point (b.

Then ochlt) = m(t) cos 3 wct = 4 m(t) cos (3wct) + 3 m(t) cos (wct)

 $\frac{1}{8}M(f-3f_c) + \frac{1}{8}M(f+3f_c) + \frac{3}{8}M(f-f_c) + \frac{3}{8}M(f+f_c)$

where fc = wo/21.

1A / 3A

The frequency bands occupied are [-3/c-B, -3/c+B],

[-3
$$f_c$$
- B_s , -3 f_c + B],
[- f_c - B_s , - f_c + B], and
[3 f_c - B_s , 3 f_c + B].

(b.2) Let occts be the signal at point ().

We will assume that the gain of the BPF is 1.

(In general, if gain = g, tren $k = \frac{3}{4}g$)

In which case, oe clt) = 3 m(t) cos wet

and $X_c(f) = \frac{3}{8}M(f - f_c) + \frac{3}{8}M(f + f_c)$

The frequency bands occupied are $[-f_c-B, -f_c+B]$ and $[f_c-B, f_c+B]$

(c) To avoid overlapping of spectra at point (b), we must have

fc-B>0, and

fc+B < 3 fc - B.

Both conditions require fc > B.

Hence, the minimum usable value of for is B.

(d) Recall (from part (a)) that cus wet = 1 + 1 cus (2wet).

There is no component around fc.

Hence, this system would not give the desired output.

(e) For this question, if you have the time to derive or look up general formula for the expansion of coshwet into a weighted sum of coskwet, then you can skip most of the explanation below.

First, observe that $\cos^{n}(\omega_{c}t)$ is a periodic funtion with "period" $T_{c} = \frac{1}{f_{c}} = \frac{2\pi}{f_{c}}$.

This is the period of cos(wet).

Any function of cos wet will automatically repeat itself every Tc.

It is also an even function.

So, its Fourier series is given by

The even property

Co + Zak cos(kwct). kills the bksin kwtt

k=1

parts.

Sos

m(t) cos (wet) = com(t) + \(\gamma \arg a_k mlt \) cos kwet

we know that the Fourier transform of amilto cos (kwat) is just scaled replicas of M(f) contered at ± kfc.

so, the Fourier transfrom of m(t) cos (wet) is simply M(t) scaled and replicated at 0, ± to, ± 2to, ± 3to,

We want the component at f_c and hence the problem is reduced to figuring out whether there is a replica of M(x) at f_c .

abbreviated iff

reduced to tigoting out whether there is a refined of the at f_a . abbreviated iff In other words the scheme works if and only if a, \$0. From our notes, we have a = 2 | cos (kwet) dt.

This is our ret) in the notes.

you don't need | Here, r(t) = cos (wet) because we only want to determine whether a, >0 a, ≠0 iff | cosn+1 wet dt ≠0. When n is odd, n+1 is even cosn't wet is strictly positive almost Therefore, the integral is strictly positive, and an is also strictly positive. Before we consider the case when n is even first note that we can write [cosn+1 wet dt = cosn+1 wet dt $\tau = t - \frac{Tc}{2}$ $= \int_{-\infty}^{\infty} \cos^{n+1}\left(\omega_{c}\left(\tau + \frac{Tc}{2}\right)\right) d\tau$ $= \int \cos^{n+1} \left(\omega_c \tau + \pi \right) d\tau$

 $\cos(\kappa + \pi) = -\cos \kappa$ $= (-1)^{n+1} \int \cos^{n+1}(\omega_c \tau) d\tau$ $= (-1)^{n+1} \int \cos^{n+1}(\omega_c \tau) d\tau$ $= \int \cos^{n+1}(\omega_c \tau) d\tau$ So, $\int \cos^{n+1}(\omega_c \tau) d\tau$ $= \int \cos^{n+1}(\omega_c \tau) d\tau$ $= \int \cos^{n+1}(\omega_c \tau) d\tau$ J cos wet dt = A + (-1) A = A-A = 0. There fore, a = 0. In conclusion, the identity for cos wet contains a term coswet when n is odd. This is not true when n is even. Therefore, the system works if and only if n is odd.