Q1 Spectrum via MATLAB

a. You may recall that the Fourier transform of $1[|t| \leq a]$ is given by $2 a \operatorname{sinc}(2 \pi f a)$.

Hence, $1[|t| \leq 1] \stackrel{\mathcal{F}}{\rightleftharpoons} 2 \operatorname{sinc}(2 \pi f)$.
Note that $g(t)=1[0 \leq t \leq 2]$ is simply $1[|t| \leq 1]$ time-shifted by 1 . As we have discussed in class, time shifting does not change the magnitude of the spectrum. Hence, $|G(f)|$ is the same as the magnitude of the Fourier transform of $1[|t| \leq 1]$. Therefore,

$$
|G(f)|=2|\operatorname{sinc}(2 \pi f)| .
$$

In the Figure (i) below, the theoretical expression above is plotted using the " x " marks on top of the provided plot from specrect.m. The marks match the theoretical plot.

b. See Figure (ii) above.
c.

$$
\begin{aligned}
S(f) & =\int_{-\infty}^{\infty} s(t) e^{-j 2 \pi f t} d t=\int_{-\infty}^{\infty} e^{-t} u(t) e^{-j 2 \pi f t} d t=\int_{0}^{\infty} e^{-(1+j 2 \pi f) t} d t \\
& =\left.\frac{1}{-(1+j 2 \pi f)} e^{-(1+j 2 \pi f) t}\right|_{t=0} ^{\infty}=\frac{1}{1+j 2 \pi f}
\end{aligned}
$$

$|S(f)|$ is plotted in part (c) using the "x" marks on top of the plots from plotspec.m. They are virtually identical.
d. With variable " a " in the m-file set to 1 , we have same result.

The main purpose of this problem is to see the spectrum of the cosine pulse.

The pulses under consideration is of the form

$$
p(t)= \begin{cases}\cos \left(2 \pi f_{0} t\right), & t_{1} \leqslant t \leqslant t_{2} \\ 0, & \text { otherwise }\end{cases}
$$

We note that $p(t)$ can be expressed as

$$
p(t)=\cos \left(2 \pi f_{0} t\right) \times r(t)
$$

where $r(t)$ is the rectangular pulse on the time interval $\left[t_{1}, t_{2}\right]$.

Writing it in this form makes it clear that we may view $p(t)$ as the modulated signal whose $r(t)$ is the message (or the modulating signal).

In which case, we can now apply what we know about modulation:
In time domain, $r(t)$ is multiplied by $\cos \left(2 \pi f_{0} t\right)$.
In freq. domain, $R(f)$ is shifted to $\pm f_{0}$ (and scaled by $\frac{1}{2}$).

In particular, $\quad P(f)=\frac{1}{2}\left(R\left(f-f_{0}\right)+R\left(f+f_{0}\right)\right)$.
So, the remaining task is to find $R(f)$.
Recall that

Here, $\tau=t_{2}-t_{1}$.
Moreover, $r(t)$ is the time-shitted version of the $e(t)$ above:

$$
r(t)=\infty\left(t-\frac{t_{1}+t_{2}}{2}\right)
$$

By the time-shift property,
Recall that $|R(f)|$

$$
\begin{aligned}
R(f) & =e^{-j 2 \pi f \frac{t_{1}+t_{2}}{2}} x(f) \quad \text { as }|x(f)| \\
& =e^{-j \pi f\left(t_{1}+t_{2}\right)}\left(t_{2}-t_{1}\right) \sin c\left(\pi f\left(t_{2}-t_{1}\right)\right)
\end{aligned}
$$

With this, we can get the expression for $P(f)$ from t.
Now, back to the question...
(a)
(ac)

(a.ii) Here, $f_{0}=5, t_{1}=-1$, and $t_{2}=1$.

Therefore, $R(f)=2 \sin c(2 \pi f)$ and $P(f)=\operatorname{sinc}(2 \pi(f-5))+\operatorname{sinc}(2 \pi(f+5))$
(a .iii)

(b)
(bi) Here, $f_{0}=5$ (same), $t_{1}=2$, and $t_{2}=4$.
Therefore, $R(f)=e^{-j 6 \pi t} 2 \operatorname{sinc}(2 \pi t)$

$$
\text { and } \begin{aligned}
P(f)= & e^{-j 6 \pi(f-5)} \operatorname{sinc}(2 \pi(f-5)) \\
& +e^{-j 6 \pi(f+5)} \operatorname{sinc}(2 \pi(f+5))
\end{aligned}
$$

(b.ii)

(b. iii) The ' x ' marks above are calculated from the analytical solution in part (bi). It agrees with what we got in part (b ,ii).
(a) The question itself actually gives us one way to find the total energy:

$$
E=\int_{-\infty}^{\infty}|G(f)|^{2} d f
$$

By the Parseval's theorem, we know that this is the same as

$$
\int_{-\infty}^{\infty}|g(t)|^{2} d t
$$

which is much easier to calculate.
For $g(t)=1[-1 \leqslant t \leqslant 1]$,
the total energy is $\int_{-\infty}^{\infty}(1[-1 \leqslant t \leqslant 1])^{2} d t$

$$
=\int_{-1}^{1} 1 d t=2
$$

Alternatively, we can work directly with the integration in the frequency domain. To do this, we will first need to find $G(f)$.

Recall that

Here, $\tau=2$. So, $G(f)=2 \operatorname{sinc}(2 \pi f)$ and

$$
E=\int_{-\infty}^{\infty}|G(f)|^{2} d f=\int_{-\infty}^{\infty} 2^{2} \sin ^{2}(2 \pi f) d f
$$

∞

$$
\begin{aligned}
& \mu=2 \pi f \\
& d f=\frac{1}{2 \pi} d \mu
\end{aligned}
$$

we've shown that this is π.
$=2$
L same as the energy found in the time domain (but the integration is considerably more difficult).
(b) If you have not found $\sigma(f)$ in part (a), this part require you to do so as the first step. However, we've already done this as an alternative solution for part (a). So, we will use that for this part.
The main lope occupies an interval of frequency
from $f_{1}=-\frac{1}{\tau}=-\frac{1}{2}$ to $f_{2}=+\frac{1}{\tau}=+\frac{1}{2}$.
So, the energy contained in the band $B=\left[f_{1}, f_{2}\right]$ is given by

$$
\int_{-1 / 2}^{1 / 2}(2 \sin c(2 \pi f))^{2} d f \approx 1.8056
$$

WolframAlpha'monuationa
or wolfram Alpha

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}}(2 \operatorname{sinc}(2 \pi f))^{2} d f=\frac{4 \operatorname{Si}(2 \pi)}{\pi} \approx 1.80565
$$

The fraction of energy contained in the main lope is

$$
\approx \frac{1.8056}{2 \%} \approx 0.9028=90.28 \%
$$

the answer from part (a)
(c) Using MATLAB, we can look at the fraction of energy as a function of f_{0}.

We found that at around $f_{0} \approx 5.1$, the fraction begins to
exceed 99%.

One requirement for a linear system is that "proportional changes in the input give the same proportional changes in the output."

In particular, if $x=1$ corresponds to $y=12$, then $x=1 \times 2$ should correspond to $y=12 \times 2=24$.
(Doubling the input cause the output to double.)

In our case, we have $y=2 x+10$.
So, if $x=1, y=2 \times 1+10=12$.
For linear system, when $x=2$, we expect y to be 24 .
However, by its definition, when $\alpha=2$, our system gives

$$
y=2 \times 2+10=14 \neq 24 .
$$

Therefore, the system is not linear.

$$
\begin{aligned}
x(t)= & 10 \cos \left(2 \pi f_{c} t\right) \\
y(t)= & 10 \cos \left(2 \pi f_{c} t-\theta\right)=10 \cos \left(2 \pi f_{c}\left(t-\frac{\theta}{2 \pi f_{c}}\right)\right) \\
& { }^{~}(2) l a y
\end{aligned}
$$

The delay is caved by the propagation time of the signal.
Recall that the amount of time delay can be calculated from

$$
\text { delay }=\frac{\text { distance }}{c_{k} \text { speed of light. }}
$$

Therefore, "one possible" distance value is
wavelength of the carrier

$$
\begin{aligned}
\text { distance } & =c \times \text { delay }=c \times \frac{\theta}{2 \pi f_{c}}=\lambda_{c} \frac{\theta}{2 \pi} \text { the } \\
& =2 \times 10^{8} \times \frac{2 \pi / 42}{2 \pi \times 7 \times 10^{6}}=\frac{100}{28} \approx 3.57 \mathrm{~m}
\end{aligned}
$$

The calculation above gives only one possible distance value because the cosine is periodic.
In particular,
$\cos \left(2 \pi f_{c} t-\theta\right)=\cos \left(2 \pi f_{c} t-\theta+2 \pi k\right)$ for any integer k.
So, what we should do is to consider

$$
\cos \left(2 \pi f_{c} t-\theta+2 \pi k\right)=\cos \left(2 \pi f_{c}\left(t-\frac{\theta}{2 \pi t_{c}}+\frac{k}{f_{c}}\right)\right.
$$

In which case, the amount of time delay could be
$\frac{\theta}{2 \pi f_{c}}-\frac{k}{f_{c}}$ for any integer k.
The corresponding possible values of distance are

$$
d=\frac{c}{f_{c}}\left(\frac{\theta}{2 \pi}-k\right)=\lambda_{c}\left(\frac{\theta}{2 \pi}-k\right)
$$

$\tau_{\text {wavelength }}$ of the carrier.
The distance is a positive quantity.
So, we need $k<\frac{\theta}{2 \pi}=\frac{\pi / 6}{2 \pi}=\frac{1}{12}$.
In other words, k can be $0,-1,-2,-3, \ldots$
(i)

The value of k which corresponds to the minimum value of distance is $k=0$. The minimum distance is

$$
d=\frac{c}{f_{c}} \frac{\theta}{2 \pi}=3.57 \mathrm{~m} .
$$

(ii) Other possible values of the distance are

$$
\begin{aligned}
d & =\frac{c}{f_{c}}\left(\frac{\theta}{2 \pi}-k\right) \text { for } k=-1,-2,-3, \ldots \\
& =\frac{c}{f_{c}}\left(\frac{\theta}{2 \pi}+n\right) \text { where } n=1,2,3, \ldots \\
& =3.57+42.86 n \text { where } n=1,2,3, \ldots
\end{aligned}
$$

(i.a) $\quad m(t)=\cos 1000 \pi t=\cos (2 \pi 500 t)$

$$
\rightarrow f_{0}=500 \mathrm{~Hz}
$$

Recall that the spectrum of $\cos \left(2 \pi f_{0} t\right)$ is given by

So, the spectrum of $m(t)$ is given by

(ib) Recall that the spectrum of $m(t) \cos \left(2 \pi f_{c} t\right)$ is given by

$$
\frac{1}{2} M\left(f-f_{c}\right)+\frac{1}{2} M\left(f+f_{c}\right)
$$

L shift $M(f)$ to the left by f_{c} shift $M(t)$ to the right by f_{c}.
Here, $f_{c}=5000 \mathrm{~Hz}$

Part (ii) uses the same explanation as part (i).
(ii. a)

$$
\begin{aligned}
m(t) & =2 \cos (1000 \pi t)+\cos (2000 \pi t) \\
& =2 \cos (2 \pi \underbrace{500}_{f_{1}} t)+\cos (2 \pi \underbrace{1000}_{f_{2}} t)
\end{aligned}
$$

(ii.b)

(iii.a)

$$
m(t)=\underbrace{\cos (1000 \pi t)}_{\text {part (i.a) }} \times \underbrace{\cos (3000 \pi t)}_{=\cos (2 \pi(1,500) t)}
$$

from (i.b), multiplication by $\cos (2 \pi(1500) t)$ in the time domain is the same as shifting the spectrum content by $\pm 1500 \mathrm{~Hz}$ and vertically scaling by $\frac{1}{2}$.

(iii.b) Here, we multiply again by $\cos (2 \pi 5,000 t)$.

So, the spectrum from (iï.a) is shitted by $\pm 5,000 \mathrm{~Hz}$ and scaled vertically by $\frac{1}{2}$.

$$
x(t)=A_{C} M(t)
$$

(a)

$$
\begin{aligned}
& x(t)=A_{c} m(t) \\
& \text { 子 } \\
& u(t)=x(t)+\sqrt{2} \cos (\overbrace{\omega_{c} t}^{\sqrt{n}}) \omega_{c}=2 \pi t_{c} \\
& v(t)=\mu^{2}(t)=\left(\alpha(t)+\sqrt{2} \cos \left(\omega_{c} t\right)\right)^{2} \\
& \begin{aligned}
&=x^{2}(t)+2 \sqrt{2} a(t) \cos \left(\omega_{c} t\right)+\underbrace{2 \cos ^{2}\left(\omega_{c} t\right)}_{\text {PF }} \\
& 1+\cos \left(2 \omega_{c} t\right)
\end{aligned} \\
& =\left(1+\alpha^{2}(t)\right)+2 \sqrt{2} \alpha(t) \cos \omega_{c} t+\cos \left(2 \omega_{c} t\right)
\end{aligned}
$$

Note 1: $x^{2}(t) \xrightarrow{\text { J }} x(t) * x(f)$
So, $x^{2}(t)$ is bandlimited to $2 B$
Because $f_{c} \gg B$, the spectrum of $\alpha^{2}(t)$ will not be in the passband of the BPF which centers around f_{C}.
Note 2: The term $\cos \left(2 \omega_{c} t\right)$ is at frequency $2 \times f_{c}$ which again is outside the passbond.

$$
\begin{aligned}
y(t) & =B P F\{v(t)\} \\
& =2 \sqrt{2} \alpha(t) \cos \omega_{c} t \\
& =2 \sqrt{2} A_{c} m(t) \cos \omega_{c} t
\end{aligned}
$$

(b) Assume

From the above figure,

$$
\begin{aligned}
& v(t)=\left(x(t)+\sqrt{2} \cos \left(\omega_{c} t\right)\right)^{2} \\
& =2 \cos ^{2}\left(\omega_{c} t\right)\left(A_{c} m(t)+1\right)^{2} \\
& =1+\cos \left(2 \omega_{l} t\right)(A_{c}^{2} \underbrace{\underbrace{}_{\text {spectrum }}}_{\substack{m^{2}(t)}}+2 A_{c} \underbrace{m(t)}_{\text {spectrum }}) \\
& \text { is from } \\
& {[-2 B, 2 B] \quad[-B, B]} \\
& \text { PF } \\
& g(t) \\
& =g(t)+g(t) \cos \left(2 \omega_{c} t\right)
\end{aligned}
$$

Note: We know that $g(t)$ is band limited to $[-2 B, 2 B]$ because all of its terms are band limited to $[-2 B, 2 B]$. So, only some parts of it will pass through the LPF.
Note 2: $g(t) \cos \left(2 \omega_{c} t\right)$ is centered $@ 2 f_{c}$ and therefore will not pass thought the LPF.

$$
\begin{aligned}
y^{I}(t) & =\operatorname{LPF}\{v(t)\} \\
& =\operatorname{LPF}\{g(t)\} \\
& =1+2 A_{c} m(t)+\operatorname{LPF}\left\{A_{c}^{2} m^{2}(t)\right\}
\end{aligned}
$$

This term has spectrum beyond IW so, only a portion of it will pass through the LPF.
$y^{I}(t)$ is not proportional to $m(t)$.
Hence, this block diagram does not work as a demodulator.
(c) As sump
$x(t)=A_{c} m(t) \sqrt{2} \cos \left(\omega_{c} t\right)$ as in part (b).

We then have

$$
\begin{aligned}
v(t)= & \left(x(t)+\sqrt{2} \sin \left(\omega_{c} t\right)\right)^{2} \\
= & 2\left(A_{c} m(t) \cos \left(\omega_{c} t\right)+\sin \left(\omega_{c} t\right)\right)^{2} \\
= & 2\left(A_{c}^{2} m^{2}(t) \cos ^{2}\left(\omega_{c} t\right)+A_{c} m(t) \cos \left(\omega_{c} t\right) \sin \left(\omega_{c} t\right)\right. \\
& \left.+\sin ^{2}\left(\omega_{c} t\right)\right) \\
= & 2\left(A_{c}^{2} m^{2}(t) \cos ^{2}\left(\omega_{c} t\right)+\sin ^{2}\left(\omega_{c} t\right)\right) \\
& +A_{c} m(t) \sin \left(2 \omega_{c} t\right) \\
= & 2\left(\left(A_{c}^{2} m^{2}(t)-1\right) \cos ^{2}\left(\omega_{c} t\right)+1\right)+A_{c} m(t) \sin \left(2 \omega_{c} t\right) \text { LPG } \\
= & 2+\left(A_{c}^{2} m^{2}(t)-1\right)\left(1+\cos \left(2 \omega_{c} t\right)\right)+A_{c} m(t) \sin \left(2 \omega_{c} t\right) \\
y^{Q}(t)= & 2+L P F\left\{A_{c}^{2} m^{2}(t)\right\}-1 \quad 0 \\
= & \text { LPG }\left\{A_{c}^{2} m^{2}(t)\right\}+1
\end{aligned}
$$

(d) Observe that
$y^{I}(t)-y^{Q}(t)=2 A_{c} m(t)$ which is the desired output of a success ful DSB-SC de modulator.

Hence, the following block diagram would work:

(a)
$y(t)=\left(m(t)+\sqrt{2} \cos \left(2 \pi f_{0} t\right)\right)^{3}$

$$
\begin{aligned}
=m^{3}(t)+3 m^{2}(t) \sqrt{2} \cos \omega_{0} t & +\underbrace{3 m(t) 2 \cos ^{2} \omega_{0} t}+(\sqrt{2})^{3} \cos ^{3}\left(\omega_{0} t\right) \\
& =3 m(t)\left(1+\cos 2 \omega_{0} t\right) \\
& =3 m(t)+3 m(t) \cos \left(2 \omega_{0} t\right)
\end{aligned}
$$

$$
\left\{\begin{aligned}
2 \cos ^{2}(\theta) & =1+\cos (2 \theta) \\
2 \cos ^{3}(\theta) & =\cos \theta+\cos \theta \cos 2 \theta \\
& =\cos \theta+\frac{1}{2} \cos \theta+\frac{1}{2} \cos 3 \theta \\
& =\frac{3}{2} \cos \theta+\frac{1}{2} \cos 3 \theta
\end{aligned}\right\}=\frac{3}{\sqrt{2}} \cos \left(\omega_{0} t\right)+\frac{1}{\sqrt{2}} \cos \left(3 \omega_{0} t\right)
$$

We want $z(t)=m(t) \sqrt{2} \cos \left(\omega_{c} t\right)$.
We see that the only term in $y(t)$ that has the form constant $x m \times \cos ()$
is $3 \mathrm{~m}(t) \cos \left(2 \omega_{0} t\right)$.
Therefore, we will center the passband to cover this part and adjust the gain to make the output the same as $z(t)$.
In particular,
We need to nave $2 f_{0}=f_{c}$. so, $f_{0}=f_{d} / 2$.
Let $H_{B p}(f)= \begin{cases}c, & \left|f-f_{c}\right| \leqslant B \\ c, & \left|f+f_{c}\right| \leqslant B \\ 0, & \text { otherwise }\end{cases}$
Then, $z(t)=\underbrace{C \times 3} m(t) \cos \left(2 \omega_{0} t\right)$
we need $c \times 3=\sqrt{2} \Rightarrow c=\frac{\sqrt{2}}{3}$
The plot of $H(f)$ is given below:

(bi) $\quad e(t)=m(t)+\sqrt{2} \cos \left(2 \pi f_{0} t\right)$

(b. $\ddot{u})$

From (a), we have

$$
y(t)=m^{3}(t)+3 \sqrt{2} m^{2}(t) \cos \left(\omega_{0} t\right)+3 m(t) \cos \left(2 \omega_{0} t\right)+\frac{1}{\sqrt{2}} \cos \left(3 \omega_{0} t\right)
$$

$$
+\frac{3}{\sqrt{2}} \cos \left(\omega_{0} t\right)
$$

If you want to know the shape of $M(f) * M(f) * M(f)$, Without trying to make and accurate you can try plotting it in MATLAB plot for $m^{3}(t)$ we know that it is using this code:

$$
\begin{aligned}
& u=\operatorname{oncs}(1,10) ; \\
& u_{2}=\operatorname{conv}(\mu, w) ; \\
& u_{3}=\operatorname{conv}\left(\mu_{2}, w\right) ; \\
& \text { plot }\left(w_{3}\right)
\end{aligned}
$$

(c) $z(t)=m(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)$

We know that

So,

$Z(t)$ is the above since. function multiplied by $\sqrt{2} \cos \left(2 \pi f_{c} t\right)$.

Because $f_{c} \gg B$, we know that

$$
\frac{1}{B} \gg \frac{1}{f_{c}}
$$

period of cos.
So, the since function becomes the envelope of the cosine carrier.

(aid) First, we use the product-to-sum formula

$$
\cos (A) \cos (B)=\frac{1}{2}(\cos (A+B)+\cos (A-B))
$$

to expand $\cos ^{3} \sigma$ into sum of weighted $\cos (k \sigma)$.

$$
\begin{aligned}
\cos ^{2} x & =\cos x \cos x=\frac{1}{2}(\cos (2 x)+\cos (0))=\frac{1}{2}(\cos 2 x+1) \\
\cos ^{3} x & =\cos x \cos ^{2} x=\cos x\left(\frac{1}{2}(\cos 2 x+1)\right) \\
& =\frac{1}{2}(\underbrace{\cos 2 x}_{=\frac{1}{2}(\cos (3 x)+\cos x)}+\cos x)=\frac{1}{4} \cos 3 x+\frac{3}{4} \cos x
\end{aligned}
$$

Plugging in $x=\omega_{c} t=2 \pi f_{c} t$, we get

$$
\cos ^{3} \omega_{c} t=\frac{1}{4} \cos \left(3 \omega_{c} t\right)+\frac{3}{4} \cos \left(\omega_{c} t\right)
$$

At point (c), we want $k m(t) \cos \omega_{c} t$
At point (b), we have

$$
m(t) \cos ^{3} \omega_{c} t=\underbrace{\frac{1}{4} m(t) \cos \left(3 \omega_{c} t\right)}_{\text {don't want this part }}+\underbrace{\frac{3}{4} m(t) \cos \left(\omega_{c} t\right)}_{\text {want this part }} .
$$

Any bandpass filter centered at $\pm \omega_{c}$ will work.
LIn addition, the passbond of this filter must be larger than $2 B$. Note that if the gain of the BPF is 1, then $k=\frac{3}{4}$.
(b)
(b.1) Let $x_{b}(t)$ be the signal at point (b).

Then $\alpha_{b}(t)=m(t) \cos ^{3} \omega_{c} t=\frac{1}{4} m(t) \cos \left(3 \omega_{c} t\right)+\frac{3}{4} m(t) \cos \left(\omega_{c} t\right)$

$$
\xrightarrow{\rightrightarrows} \frac{1}{8} M\left(f-3 f_{c}\right)+\frac{1}{8} M\left(f+3 f_{c}\right)+\frac{3}{8} M\left(f-f_{c}\right)+\frac{3}{8} M\left(f+f_{c}\right)
$$

where $f_{c}=\omega_{c} / 2 \pi$.

where $f_{c}=\omega_{c} / 2 \pi$.

The frequency bends occupied are $\left[-3 f_{c}-B,-3 f_{c}+B\right]$,

$$
\begin{aligned}
& {\left[-f_{c}-B,-f_{c}+B\right]} \\
& {\left[f_{c}-B, f_{c}+B\right], \text { and }} \\
& {\left[3 f_{c}-B, 3 f_{c}+B\right]}
\end{aligned}
$$

(b.2) Let $x_{c}(t)$ be the signal at point (c).

We will assume that the gain of the BPF is 1.
(In gercial, if gain $=g$, then $k=\frac{3}{4} g$)

In which case, oe $(t)=\frac{3}{4} m(t) \cos \omega_{c} t$
and $\quad x_{c}(f)=\frac{3}{8} M\left(f-f_{c}\right)+\frac{3}{8} M\left(f+f_{c}\right)$

The frequency bands occupied are $\left[-f_{c}-B,-f_{c}+B\right]$ and $\left[f_{c}-B, f_{c}+B\right]$
(c) To avoid overlapping of spectra at point b),
we must have

$$
f_{c}-B>0 \text {, and }
$$

$$
f_{c}+B<3 f_{c}-B
$$

Both conditions require $f_{c}>B$.
Hence, the minimum usable value of f_{c} is B.
(d) Recall (from part (a)) that $\cos ^{2} \omega_{c} t=\frac{1}{2}+\frac{1}{2} \cos \left(2 \omega_{c} t\right.$).

There is no component around f_{c}.
Hence, this system would not give the desired output.
(e) For this question, if you have the time to derive or look up general formula for the expansion of $\cos ^{n} \omega_{c} t$ into a weighted sum of coskwet, then you can skip most of the explanation below.
First, observe that $\cos ^{n}\left(\omega_{c} t\right)$ is a periodic funtion with "period" $T_{c}=1 / f_{c}=2 \pi / f_{c}$.
(This is the period of $\cos \left(\omega_{c} t\right)$.
Any function of cos wet will automatically repeat itself every T_{C}.
It is also an even function.
So, its Fourier series is given by
The even" property

$$
c_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(k \omega_{c} t\right)
$$ kills the $b_{k} \sin k \omega_{c} t$ parts.

So,

$$
m(t) \cos ^{n}\left(w_{c} t\right)=\operatorname{com}(t)+\sum_{k=1}^{\infty} a_{k} m(t) \cos k \omega_{c} t
$$

we know that the Fourier transform of $\operatorname{arm}_{k}(t) \cos$ (kwct) is just scaled replicas of $M(f)$ centered $a^{k}+ \pm k f_{c}$.
So, the Fourier transfrom of $m(t) \cos ^{n}\left(\omega_{c} t\right)$ is $\operatorname{simply} M(t)$ scaled and replicated at $0, \pm f_{c}, \pm 2 f_{c}, \pm 3 f_{c}, \ldots$
We want the component at f_{c} and hence the problem is reduced to figuring out whether there is a replica of $M(t)$ at f_{c}. abbreviated iff
 at f_{c}. abbreviated iff
In other words the scheme works if and only if $a_{1} \neq 0$.
From our note, we have

$$
a_{k}=\left(\frac{2}{T_{c}}\right) \int_{T_{c}} \underbrace{\cos ^{n}\left(\omega_{c} t\right)}_{i} \cos \left(k \omega_{c} t\right) d t
$$

you don't need
to use this factor
This is our $r(t)$ in the notes.
because we only want
to determine whether $a_{1}>0$
So,

$$
a_{1} \neq 0 \text { iff } \int_{T_{c}} \cos ^{n+1} \omega_{c} t d t \neq 0
$$

When n is odd, $n+1$ is even
$\cos ^{n+1} \omega_{c} t$ is strictly positive almost everywhere.
Therefore, the integral is strictly positive, and a_{1} is also strictly positive.
Before we consider the case when n is even,
first note that we can write

$$
\begin{aligned}
\int_{T_{c}} \cos ^{n+1} \omega_{c} t d t & =\int_{0}^{T_{c}} \cos s^{n+1} \omega_{c} t d t \\
& =\int_{0}^{T_{c} / 2} \cos { }^{n+1} \omega_{c} t d t+\int_{T_{c} / 2}^{L_{c t}} \cos s^{n+1} \omega_{c} t d t \\
\tau=t-\frac{T_{c}}{2} & \underbrace{T_{c}} \cos ^{n+1}\left(\omega_{c}\left(\tau+\frac{T_{c}}{2}\right)\right) d \tau \\
& =\int_{0}^{T_{c} / 2} \cos { }^{n+1}\left(\omega_{c} \tau+\pi\right) d \tau
\end{aligned}
$$

$$
\cos (x+\pi)=-\cos \alpha>(-1)^{n+1} \int_{0}^{T_{c} / 2} \cos { }^{n+1}\left(\omega_{c} \tau\right) d \tau
$$

So, $\int_{T_{c}} \cos ^{n+1} \omega_{c} t d t=A+(-1)^{n+1} A$ where $A=\int_{0} \cos ^{n+1} \omega_{c} t d t$
When n is even, $(-1)^{n+1}=-1$ and

$$
\int_{T_{c}} \cos ^{n+1} \omega_{c} t d t=A+(-1) A=A-A=0
$$

Therefore, $a_{1}=0$.
In conclusion, the identity for $\cos ^{n} \omega_{c} t$ contains a term cos wat when n is odd. This is not true when n is even.

Therefore, the system works if and only if n is odd.

