Q1 Since Review

Monday, September 17, 2012
9:09 PM
(a) No, the sine function is not time-limited.
(b) Since function in time domain corresponds to rectangular function in frequency domain.
so, yes, it is bund-limited.
(c) $g(t)=\operatorname{sinc}(3(t-5))$.

Then, for $g(t)$, the graph of since (at) is shifted
to $t=5$

To check our sketch above, we also provide the plot of $g(t)$ from MATLAB.

(d) $|G(f)|$ is the same as $|x(f)|$ where $\alpha(t)=\operatorname{sinc}(3 t)$.

$$
\operatorname{sinc}(3 t)=\frac{\sin (3 t)}{3 t} \quad 3 t=2 \pi \times \frac{3}{2 \pi} \times t
$$

Because $\operatorname{se}(0)=1$,
we need
$h \times 2 \times \frac{3}{2 \pi}=1$
$h=\frac{\pi}{3}$

Q2 Reconstruction Formula

It is easy to search your lecture notes for the reconstruction formula.

The formula is

$$
g_{r}(t)=\sum_{n=-\infty}^{\infty} g[n] \operatorname{sinc}\left(\pi f_{s}\left(t-n T_{s}\right)\right)
$$

However, this problem is all about trying to write the formula above by recalling the reconstruction process.

To do this, recall that reconstruction is a process in which we try to reconstruct $g(t)$ from $g[n]$, where

$$
g[n]=g(n T)
$$

To do this, we simply interpolate the values between the samples by the sine function:

So, you know that the reconstruction formula must be of the form

$$
g_{n}(t)=\sum_{n=-\infty}^{\infty} g[n] \operatorname{sinc}\left(c_{\uparrow}\left(t-n T_{s}\right)\right)
$$

The constant here is determined by the fact that we want

$$
\operatorname{sinc}(c t)= \begin{cases}1, & t=0 \\ 0, & t= \pm T_{3}, \pm 2 T_{s}, \pm 3 T_{3}, \ldots\end{cases}
$$

So, we need $c k T_{s}=k \pi$
\Downarrow

$$
c=\frac{\pi}{T_{s}}=\pi f_{s}
$$

(a) In the time domain:

$$
\begin{aligned}
& p(t)= \begin{cases}1, & t=0 \\
0, & t= \pm T, I 2 T, I 3 T, \ldots\end{cases} \\
& \\
& \frac{1}{T}=\text { symbol dur }
\end{aligned}
$$

necessarily equal the pulse duration (the pulse may not even be time-limited.) measured in symbols per second or baud
(b) In the freq. domain:

$$
\sum_{k=-\infty}^{\infty} p\left(f-\frac{k}{T}\right) \equiv T
$$

Reminder: A pulse $p(t)$ is called a Nyquist pulse iff it satisfies

General strategy (recipe)
Let the end of the given interval be $\frac{1}{2 T}$.

Then, set the symbol duration to be $T=\frac{1}{2 f_{0}}$.
Our pulse will be band-limited to $\frac{1}{T}$.
Recall that...
to check whether a pulse is a Nyquist pulse, we check whether

$$
\begin{aligned}
& \sum_{k=-\infty}^{\infty} P\left(f-\frac{k}{T}\right) \equiv T \\
& P(f) \text { is replicated every } \frac{1}{T}
\end{aligned}
$$

Now consider 4 intervals:

Note that when $P(f)$ is copied to $\frac{1}{T}$, its content in region (1) will show up in region (3)

Therefore, when we add $P(f)$ in region (1) and $P(f)$ in region (3), we must have T.

In other words, $P(f)$ in region (1) can be found by $T-P(f)$ in region (3).
(hinted)
The suggested symmetry in $P(f)$ allow us to find $P(f)$ in region (2) by flipping $P(f)$ in region (3) horizontally and
$P(f)$ in region (4) by flipping $P(f)$ in region (1) horizontally.

For this question, we have $f_{0}=1$. Therefore, we will choose

$$
T=\frac{1}{2 f_{0}}=0.5 . \quad \Rightarrow \frac{1}{T}=2 \text { and } \frac{1}{2 T}=1 .
$$

The four regions under consideration are
(1) $f \in[-2,-1)$
(2) $f \in[-1,0)$
(3) $f \in[0,1)$
(4) $f \in[1,2]$

The question specifies $P(f)$ in region (3) as discussed above.
We will use the strategy described above to find $P(f)$ which is band-limited to $\frac{1}{T}$.
(a)

Note that in region (3), $P(f) \equiv T$ already. Therefore, we need nothing from region (1); in other words, $f(f) \equiv 0$ in region (1)

(There is no need to check whether $P(f)$ satisfies the Nyquist criterion again because it is constructed by our recipe above.)
(b) In this part, the value of $P(f)$ in region (3) is 0.25 ;

So, we will set the value in region (1) to be

$$
T-0.25=0.5-0.25=0.25 .
$$

The values in region (2) and (4) are from the symmetry in $P(f)$.

(c)

(d)

Q5 Raised Cosine Pulse
Monday, September 17, 2012
7:51 PM

$$
\alpha=0.3, \quad T=1
$$

(a)

$$
\begin{aligned}
& \frac{1}{2 T}=\frac{1}{2} \\
& \frac{\alpha}{T}=\frac{0.3}{1}=0.3 \\
& \frac{\alpha}{2 T}=\frac{0.3}{2}=0.15
\end{aligned}
$$

(b) The raised cosine pulse is a Nyquist pulse.

Therefore,

$$
p(t)= \begin{cases}1, & t=0 \\ 0, & t= \pm T, \pm 2 T, \pm 3 T, \ldots\end{cases}
$$

Here, $T=1$.
Hence, $\quad p(t)= \begin{cases}1, & t=0 \\ 0, & t= \pm 1, \pm 2, \pm 3 \ldots\end{cases}$
In particular, $p(2)=0$
(C) Note that $P\left(\frac{1}{2} T\right)=\frac{T}{2}$.

Here, $T=1$. Hence, $P\left(\frac{1}{2}\right)=\frac{1}{2}$.
(d) From part (a), we've seen that $P(f)=1$ for $f \in[-0.35,0.35]$. Therefore, $\quad P(0.3)=1$.
(e) We magnify the plot in part (a) for clarity

This is the "raised"

$$
f: 0 \quad \pi \quad \text { (half a cycle) }
$$

$$
\begin{aligned}
\Rightarrow P(0.4) & =\frac{1}{2}\left(1+\cos \left(\pi \times \frac{0.05}{0.3}\right)\right) \\
& =\frac{1}{2}(1+\cos (\pi / 6)) \\
& =\frac{2+\sqrt{3}}{4} \approx 0.933
\end{aligned}
$$

Q6 Raised Cosine Pulse
Monday, September 17, 2012
7:38 PM
We have seen in class that the formula for the raised cosine pulse in the time domain is

$$
p_{R C}(t)=\frac{\cos \left(\alpha \pi \frac{t}{T}\right)}{1-\left(2 \alpha \frac{t}{T}\right)^{2}} \frac{\sin \left(\pi \frac{t}{T}\right)}{\pi \frac{t}{T}}
$$

(I still dun't have an easy way to "remember" this formula except the fact that it will need to have a factor of $\operatorname{sinc}\left(\pi \frac{t}{T}\right)$.)
At $t=\frac{T}{2}$, we have $\frac{t}{T}=\frac{1}{2}$

$$
\begin{aligned}
p_{R C}\left(\frac{\pi}{2}\right) & =\frac{\cos \left(\alpha \frac{\pi}{2}\right)}{1-\alpha^{2}} \frac{\sin \frac{\pi}{2}}{\frac{\pi}{2}} \\
& =\frac{2}{\pi} \times \frac{\cos \left(\alpha \frac{\pi}{2}\right)}{1-\alpha^{2}}
\end{aligned}
$$

MATLAB plot:

Note that when $\alpha=0, P_{R C}\left(\frac{T}{2}\right)=\frac{2}{\pi} \approx 0.6366$ As $\alpha \rightarrow 1, \quad p_{R C}\left(\frac{I}{2}\right) \rightarrow \frac{2}{\pi} \times\left.\frac{\frac{\pi}{2}\left(-\sin \left(\alpha \frac{\pi}{2}\right)\right)}{-2 \alpha}\right|_{\alpha=1}=\frac{1}{2}$.

