Q1 Euler's Formula
Thursday, November 11, 2010
2:54 PM

$$
=\frac{1}{2}(\cos (A+B)+\cos (A-B))
$$

We know that

$2 a \sin c(2 \pi a f) \xrightarrow{J^{-1}} 1[|t| \leqslant a] \leftarrow$ shown in class.
Therefore,

$$
\operatorname{sinc}(2 \pi a f) \xrightarrow{7^{-1}} \frac{1}{2 a} 1[|t| \leqslant a]
$$

Finally,

$$
\begin{array}{ll}
\operatorname{sinc}^{2}(2 \pi a f) & \stackrel{\xi^{-1}}{\longrightarrow} \frac{1}{2 a^{2}} 1[|t| \leqslant a] * \frac{1}{2 a} 1[|t| \leqslant a] \\
\text { his question, } & =\frac{1}{4 a^{2}}(1[|t| \leqslant a] * 1[|t| \leqslant a]) \\
2 a=5 . &
\end{array}
$$

In this question,

So, we can solve this question if we con find the convolution of $1[|t| \leqslant a]$ with itself.
This is also discussed in class:

$$
1[|t| \leqslant a] * 1[|t| \leqslant a]=
$$

Therefore, the plot of $\alpha(t)$ shad be the same as \sum but scaled vertically by a factor of $1 / 4 a^{2}$:

For us, $a=\frac{5}{2}$. so, $2 a=5$ and the plot of $\alpha(t)$ is $x(t)$

First, we review some useful signal operations
Time shifting: $g(t-T)$ represents $g(t)$ time-shitted by T.
If T is positive, the shift is to the right (delay).
If T is negative, the shift is to the left.
Time scaling: If $g(t)$ is compressed in time by a factor a (a>1), the resulting signal is g(at).
If $0<a<1$, the scaling is expansion.
Time inversion (Time reversal)
: $g(-t)$ is the mirrow image of $g(t)$ about the vertical axis.

All the signals are plotted below

The tricky one would be $g(6-t)$.
There are two ways to think about it t... :nrossion time shift, $T=6$

There are two ways to think about it
(1) $g(t) \xrightarrow{\text { time inversion }} g(-t) \xrightarrow{\text { time shift, } T=6} g(-(t-6))$
mirror image about the vertical axis
(2) $g(t) \xrightarrow{\text { time shift, } T=-6} g(t+6) \xrightarrow{\text { time inversion }} g(-t+6)$
shift to
the left by 6

Wedereday, Mull ${ }^{6,2011}$ the sampling property of the delta function

$$
\int_{-\infty}^{\infty} \phi(t) \delta(t) d t=\varnothing(0)
$$

If we let $\tau=t-T$, then $d \tau=d t$, $t=\tau+T$, and $(\notinfty) \quad \int_{-\infty}^{\infty} \phi(t) \delta(t-T) d t=\int_{-\infty}^{\infty} \phi(\tau+T) \delta(\tau) d \tau=\left.\varnothing(\tau+T)\right|_{\tau=0} ^{\infty}=\varnothing(T)$

Let $\mu=t-\tau \Rightarrow d \mu=-d \tau$
(a)

$$
\left.\int_{-\infty}^{\infty} g(\tau) \delta(t-\tau) d \tau \stackrel{L}{=} \int_{-\infty}^{\infty} g(t-\mu) \delta(\mu) d \mu \stackrel{ }{=} g(t-\mu)\right|_{\mu=0}=g(t)
$$

Remark: (a) and (b)
simply mean
(b) $\left.g(t-\tau)\right|_{\tau=0}=g(t) \quad$ (use t)

$$
g * \delta=\delta * g=g
$$

(c) $\left.e^{-j 2 \pi f t}\right|_{t=0}=e^{0}=1 \quad$ (use A)
(d) $\left.\sin (\pi t)\right|_{t=2}=\sin (2 \pi)=0$ (use A)
(e) $\left.e^{-t}\right|_{t=-3}=e^{-(-3)}=e^{3} \quad$ (use At)
$(t) t^{3}+\left.4\right|_{t=1}=1^{3}+4=1+4=5 \quad$ (use (a))
(g) $\left.g(2-t)\right|_{t=3}=g(2-3)=g(-1)$ (use (a))
(h) $e^{x-1} \cos \left(\frac{\pi}{1}(x-5)\right) \left\lvert\,=e^{3-1} \cos \left(\frac{\pi}{2}(3-5)\right)=e^{2} \cos (-\pi)=-e^{2}\right.$

$$
t=3
$$

(h) $\left.e^{x-1} \cos \left(\frac{\pi}{2}(x-5)\right)\right|_{x=3}=e^{3-1} \cos \left(\frac{\pi}{2}(3-5)\right)=e^{2} \cos (-\pi)=-e^{2}$
(use *)
wednesday, July 06, 2011
(P) Note that $g_{1}(t)=g(-t)$.

Recall that $\operatorname{re}(a t) \xrightarrow{f} \frac{1}{|a|} \times\left(\frac{f}{a}\right)$.
Here, $a=-1$.
Therefore, $G_{1}(f)=\frac{1}{|-1|} G\left(\frac{f}{-1}\right)=\frac{1}{(2 \pi f)^{2}}\left(e^{-j 2 \pi f}+j 2 \pi f e^{-j 2 \pi f}-1\right)$
(c) Note that $g_{2}(t)=g(t-1)+g_{1}(t-1)$

$$
\begin{aligned}
G_{2}(f) & =e^{-j 2 \pi f} G(f)+e^{-j 2 \pi f} G_{1}(f) \\
& =\frac{e^{-j \omega}}{\omega^{2}}\left(e^{j \omega}-j \omega e^{j \omega}-1+e^{-j \omega}+j \omega e^{-j \omega}-1\right) \\
& =\frac{e^{-j \omega}}{\omega^{2}}(2 \cos (\omega)-j \omega(2 j) \sin \omega-2 \\
& =\frac{2 e^{-j 2 \pi f}}{(2 \pi f)^{2}}(\cos (2 \pi f)+2 \pi f \sin (2 \pi f)-1)
\end{aligned}
$$

(d) Note that $g_{3}(t)=g(t-1)+g_{1}(t+1)$

$$
\begin{aligned}
\Rightarrow \quad G_{3}(f) & =e^{-j 2 \pi f} G(f)+e^{j 2 \pi f} G_{1}(f) \\
& =\frac{1}{\omega^{2}}\left(1-j \omega-e^{-j \omega}+1+j \omega-e^{j \omega}\right)
\end{aligned}
$$

Recall that

$$
\begin{aligned}
\cos ^{2} A=\frac{1}{2}(1+\cos 2 A) & =\frac{1}{\omega^{2}}(2-2 \cos (\omega))=\frac{2}{\omega^{2}}(1-\cos \omega) \\
1-\sin ^{2} A=\frac{1}{2}+\frac{1}{2} \cos 2 A & =\frac{2}{\omega^{2}} 2 \sin ^{2}\left(\frac{\omega}{2}\right)=\left(\frac{\sin \left(\frac{\omega}{2}\right)}{\omega / 2}\right)^{2}=\sin ^{2}\left(\frac{\omega}{2}\right)
\end{aligned}
$$

$$
1-\cos 2 A=2 \sin ^{2} A=\sin ^{2}(\pi f)
$$

(e) Note that $g_{4}(t)=g\left(t-\frac{1}{2}\right)+g_{1}\left(t+\frac{1}{2}\right)$.

$$
\begin{aligned}
\Rightarrow \quad G_{4}(f) & =e^{-j \omega / 2} G(f)+e^{j \omega / 2} G_{1}(f) \\
& =e^{-j \omega / 2} \frac{1}{\omega^{2}}\left(e^{j \omega}-j \omega e^{j \omega}-1\right) \\
& +e^{j \omega / 2} \frac{1}{\omega^{2}}\left(e^{-j \omega}+j \omega e^{-j \omega}-1\right) \\
& =\frac{1}{\omega^{2}}\left(e^{j \frac{\omega}{2}}-j \omega e^{j \frac{\omega}{2}}-e^{-j \frac{\omega}{2}}+e^{-j \frac{\omega}{2}}+j \omega e^{-j \frac{\omega}{2}}-e^{j \frac{\omega}{2}}\right) \\
& =\frac{-j}{\omega}\left(e^{j \omega / 2}-e^{-j \omega / 2}\right)=\frac{(-j)}{\omega}(2 j) \sin (\omega / 2) \\
& =\frac{\sin (\omega / 2)}{\omega / 2}=\operatorname{sinc}\left(\frac{\omega}{2}\right)=\operatorname{sinc}(\pi f)
\end{aligned}
$$

(f) Note that $g_{5}(t)=1.5 g\left(\frac{1}{L}(t-2)\right)$

$$
\begin{aligned}
\Rightarrow G_{5}(t) & =1.5 \times \frac{1}{2 / 2} G\left(\frac{t}{1 / 2}\right) e^{-j 2 \omega} \\
& =3 G(2 f) e^{-j} \\
& =3 \times \frac{1}{(2 \pi 2 t)^{2}}\left(e^{j 2 \omega}-j 2 \omega e^{j 2 \omega}-1\right) e^{-j 2 \omega} \\
& =\frac{3}{4 \omega^{2}}\left(1-2 j \omega-e^{-2 j \omega}\right) \\
& =\frac{3}{4(2 \pi t)^{2}}\left(1-j 4 \pi f-e^{-j 4 \pi t}\right)
\end{aligned}
$$

(a) we know that

$$
1[|t| \leqslant a] \xrightarrow{F} 2 a \sin (2 \pi f a)
$$

So,

$$
1[|t| \leqslant a]=\int_{-\infty}^{\infty} 2 a \operatorname{sinc}(2 \pi f a) e^{j 2 \pi t t} d t
$$

Inverse trans form
For $a>0$, we have

$$
\int_{-\infty}^{\infty} \sin c(2 \pi f a) e^{j 2 \pi f t} d f=\frac{1}{2 a} 1[|t| \leqslant a]
$$

Setting $t=0$ leads to

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \operatorname{sinc}(2 \pi f a) d f=\frac{1}{2 a}=\frac{1}{\uparrow \times \frac{\sqrt{5}}{2 \pi}=\frac{\pi}{\sqrt{5}}} \\
& 2 \pi a=\sqrt{5} \quad \Rightarrow \quad a=\sqrt{5}
\end{aligned}
$$

Here, $2 \pi a=\sqrt{5} \Rightarrow a=\frac{\sqrt{5}}{2 \pi}$
(b) Note first that $2 \operatorname{sinc}(2 \pi f) \xrightarrow{\mathcal{F}^{-1}} 1[|t| \leqslant 1] \quad(a=1)$

By the time-shift property,

$$
e^{-j 2 \pi f t_{0}} 2 \sin c(2 \pi f) \xrightarrow{\mathcal{F}^{-1}} 1\left[\left|t-t_{0}\right| \leqslant 1\right]
$$

By Parseval's theorem

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left(e^{-j 2 \pi f t_{1}} G_{1}(f)\right)\left(e^{-j 2 \pi f t_{2}} G_{L}(f)\right)^{*} d f= \\
=\int_{-\infty}^{\infty} g_{1}\left(t-t_{1}\right) g_{2}^{*}\left(t-t_{2}\right) d t
\end{gathered}
$$

Here, $\begin{aligned} & g_{1}(t)=g_{2}(t) \\ &+=1[|t| \leqslant 1] \quad \uparrow \quad g_{2}(t-5) \\ &+ g_{1}(t-2) \\ &<\end{aligned}$

Here, $g_{1}(t)=g_{2}(t)=1\lfloor|t| \leqslant 1\rfloor$

$$
t_{1}=2, \quad t_{2}=5
$$

No overlap, so the integral is 0 .

Alternatively, we con first simplify the integral to

$$
\int_{-\infty}^{\infty} e^{j 2 \pi t\left(t_{l}-t_{1}\right)} G_{1}(f) G_{2}(t) d f
$$

This is then the inverse Fourier transform of $G_{1}(t) G_{2}(y)$ evaluated at $t=\left(t_{2}-t_{1}\right)$.

The inverse Fourier, tionsform is given by $g_{1}(t) * g_{2}(t)$.
Again, $g_{1}(t)=g_{2}(t)=1[|t| \leqslant 1]$.
So, $g_{1}(t) * g_{2}(t)=$

Here, $t_{2}-t_{1}=5-2=3$. So, the integral is 0 .
(c) $\sin c(\underbrace{2 \pi a} f){\xrightarrow{\mathcal{F}^{-1}}}_{{ }^{2 a}}^{1} 1[|t| \leqslant a]$.

$$
\begin{aligned}
&=c \\
& \Perp \\
& c=\frac{c}{2 \pi} \quad \mathcal{J}^{-1} \\
& \sin c(c f) \frac{\pi}{c},\left[|t| \leqslant \frac{c}{2 \pi}\right]
\end{aligned}
$$

Again, by Parseral's theorem,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \sin c\left(c_{1} f\right) \sin ^{*}\left(c_{2} f\right) d f & =\int_{-\infty}^{\infty} \frac{\pi}{c_{1}}\left\{\left[|t| \leqslant \frac{c_{1}}{2 \pi}\right] \frac{\pi}{c_{2}} 1\left[|t| \leqslant \frac{c_{2}}{2 \pi}\right] d t\right. \\
& =\frac{\pi^{2}}{c_{1} c_{2}} \times \min \frac{\left\{c_{1}, c_{2}\right\}}{\pi}=\frac{\pi}{c_{1} c_{2}} \min \left\{c_{1}, c_{2}\right\} .
\end{aligned}
$$

$$
=\frac{\pi^{2}}{c_{1} c_{2}} \times \min \frac{\left\{c_{1}, c_{2}\right\}}{\mathbb{K}}=\frac{\pi}{c_{1} c_{2}} \min \left\{c_{1}, c_{2}\right\} .
$$

\uparrow Here, $c_{1}=\sqrt{5}, \quad c_{2}=\sqrt{7}$.
So, the integral is $\frac{\pi}{\sqrt{5} \sqrt{7}} \sqrt{5}=\frac{\pi}{\sqrt{7}}$
Alternatively, the integral is the inverse Fourier transform: of $\sin c\left(c_{1} f\right) \sin c\left(c_{2} f\right)$ evaluated at $t=0$.
same calculation
(d) $\sin c(c f) \xrightarrow{\mathcal{F}^{-1}} \frac{\pi}{c},\left[|t| \leqslant \frac{c}{2 \pi}\right]$

$$
\begin{gathered}
\mid c=\pi \\
\sin c(\pi f) \xrightarrow{\mathcal{F}^{-1}} 1\left[|t| \leqslant \frac{1}{2}\right] \\
\sin c\left(\pi\left(f-f_{0}\right)\right) \xrightarrow{J^{-1}} e^{j 2 \pi f_{0} t} 1\left[|t| \leqslant \frac{1}{2}\right]
\end{gathered}
$$

By Parseval's theorem, the integral is the same as

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{j 2 \pi t_{1} t} 1\left[|t| \leqslant \frac{1}{L}\right] e^{-j 2 \pi t_{L} t} 1\left[|t| \leqslant \frac{1}{c}\right] d t \\
& =\int_{-1 / 2}^{1 / 2} e^{j 2 \pi\left(f_{1}-t_{L}\right) t} d t=\left.\frac{1}{j 2 \pi\left(t_{1}-t_{L}\right)} e^{j 2 \pi\left(t_{1}-t_{L}\right) t}\right|_{-1 / 2} ^{1 / 2} \\
& =\frac{1}{j 2 \pi\left(f_{1}-f_{L}\right)} e^{j 2 \pi\left(f_{1}-f_{L}\right) \frac{1}{2}}-e^{-j \angle \pi\left(t_{1}-f_{L}\right) \frac{1}{L}} \\
& =\frac{\sin \left(\pi\left(f_{1}-f_{2}\right)\right)}{\pi\left(f_{1}-f_{c}\right)}=\sin c\left(\pi\left(f_{1}-f_{c}\right)\right)
\end{aligned}
$$

If $f_{1}-f_{2}$ is an integer, then the integral is 0 .
Here, $f_{1}-f_{2}=5-\frac{7}{2}=\frac{3}{2}$.

So, the integral is $\frac{\sin \left(\frac{3}{2} \pi\right)}{\frac{3}{2} \pi}=\frac{-1}{\frac{3}{2} \pi}=-\frac{2}{3 \pi}$.

