ECS 332: In-Class Exercise # 8 - Sol

Instructions

- Separate into groups of no more than three students each. The group cannot be the same as any of your former groups.
- 2. Explanation is not required for this exercise [ENRE]
- 3. Do not panic.

Date: <u>1</u> <u>8</u> / <u>0</u> <u>9</u> / 2019				
Name	IL	ID (last 3 digits)		
Prapun	5	5	5	

1. The impulse response of a multipath channel is of the form

$$h(t) = \sum_{k=1}^{\nu} \beta_k \delta(t - \tau_k)$$

a. Suppose v = 2, $\beta_1 = \beta_2 = 0.5$, $\tau_1 = 1$, $\tau_2 = 3$.

For each of the following channel input x(t), find the corresponding channel output y(t). Note that the output should be of the form $y(t) = A\cos(2\pi f_0 t + \theta_0)$ for some constants A, f_0 , and θ_0 .

Channel input	Channel output
$x(t) = \cos(\pi t)$	y(t) = 0.5x(t-1) + 0.5x(t-3) = 0.5 cos($\pi(t-1)$) + 0.5 cos($\pi(t-3)$) = 0.5 cos($\pi t - \pi$) + 0.5 cos($\pi t - 3\pi$) = -0.5 cos(πt) - 0.5 cos(πt) = -cos(πt)
$y(t) = 0.5x(t-1) + 0.5x(t-3)$ $= 0.5\cos\left(\frac{\pi}{2}(t-1)\right) + 0.5\cos\left(\frac{\pi}{2}(t-3)\right)$ $= 0.5\cos\left(\frac{\pi}{2}t - \frac{\pi}{2}\right) + 0.5\cos\left(\frac{\pi}{2}t - \frac{3\pi}{2}\right)$ $= 0.5\cos\left(\frac{\pi}{2}t - \frac{\pi}{2}\right) + 0.5\cos\left(\frac{\pi}{2}t - \frac{3\pi}{2}\right)$ Conversion to phasor form $\Leftrightarrow 0.5 \ge -90^\circ + 0.5 \ge -270^\circ = 0$ $= 0$ Conversion back to time domain $\Leftrightarrow 0\cos\left(\frac{\pi}{2}t + 0\right) \equiv 0$	

b. Suppose v = 1, $\beta_1 = 0.5$, $\tau_1 = 3$. Plot |H(f)| from f = -1 to f = 1 Hz.

When v = 1, we have $h(t) = \beta_1 \delta(t - \tau_1)$. With the provided values, we have $h(t) = 0.5\delta(t - 3)$.

Therefore, $H(f) = 0.5e^{-j2\pi 3f}$ and $|H(f)| = 0.5|e^{-j6\pi f}| = 0.5 \times 1 = 0.5$. Note that this is a distortionless channel. So, the magnitude spectrum should be flat.