ECS 332: In-Class Exercise \# 12-Sol

Instructions

1. Separate into groups of no more than three students each. The group cannot be the same as any of your former groups after the midterm.
2. [ENRE] Explanation is not required for this exercise.
3. Do not panic.

Date: 1 6/1 0/2019

Name			
Prapun	5	5	5

1. $M(f)$ is plotted on the left below. Consider a switching modulator:

The switching box is operating at frequency 30 Hz with duty cycle 50%.
a. $\operatorname{Plot} V(f)$

We have seen, in class, that
$v(t)=m(t) \times r(t)$ where $r(t)=\frac{1}{2}+\frac{2}{\pi} \cos \left(2 \pi f_{0} t\right)-\frac{2}{3 \pi} \cos \left(2 \pi\left(3 f_{0}\right) t\right)+\frac{2}{5 \pi} \cos \left(2 \pi\left(5 f_{0}\right) t\right)+\cdots$

For the BPF, note that $|f-a| \leq b$ is the same as $-b \leq f-a \leq b$ which, in turn, is equivalent to $-b+a \leq f \leq b+a$.

c. Plot $X(f)$ when the frequency response of the BPF is $H(f)=\left\{\begin{array}{ll}4, & |f-33| \leq 3, \\ 4, & |f+33| \leq 3, \\ 0, & \text { otherwise. }\end{array}=\left\{\begin{array}{cc}4, & 30 \leq f \leq 36, \\ 4, & -36 \leq f \leq-30, \\ 0, & \text { otherwise. }\end{array}\right.\right.$

