| ECS 315: Probability and Random Processes | 2018/1 |
| :--- | ---: |
| HW Solution 4 —— Due: September 18, 4 PM |  |
| Lecturer: Prapun Suksompong, Ph.D. |  |

Problem 1. Continue from Problem 2 in HW3.
Recall that, there, we consider a random experiment whose sample space is $\{a, b, c, d, e\}$ with probabilities $0.1,0.1,0.2,0.4$, and 0.2 , respectively. Let $A$ denote the event $\{a, b, c\}$, and let $B$ denote the event $\{c, d, e\}$. Find the following probabilities.
(a) $P(A \mid B)$
(b) $P(B \mid A)$
(c) $P\left(B \mid A^{c}\right)$

Solution: In HW3, we have already found

$$
\begin{aligned}
P(A) & =P(\{a, b, c\})=0.1+0.1+0.2=0.4, \\
P(B) & =P(\{c, d, e\})=0.2+0.4+0.2=0.8, \text { and } \\
P(A \cap B) & =P(\{c\})=0.2
\end{aligned}
$$

Therefore, by definition,
(a) $P(A \mid B) \equiv \frac{P(A \cap B)}{P(B)}=\frac{0.2}{0.8}=\frac{1}{4}$ and
(b) $P(B \mid A) \equiv \frac{P(B \cap A)}{P(A)}=\frac{P(A \cap B)}{P(A)}=\frac{0.2}{0.4}=\frac{1}{2}$.
(c) DO NOT start with $P\left(B \mid A^{c}\right)=1-P(B \mid A)$. This is not one of the formulas for conditional probabilities. Here, we will have to go back to the definition:

$$
P\left(B \mid A^{c}\right)=\frac{P\left(B \cap A^{c}\right)}{P\left(A^{c}\right)}=\frac{P(\{d, e\})}{P(\{d, e\})}=1 .
$$

## Problem 2.

(a) Suppose that $P(A \mid B)=0.4$ and $P(B)=0.5$ Determine the following:
(i) $P(A \cap B)$
(ii) $P\left(A^{c} \cap B\right)$
[Montgomery and Runger, 2010, Q2-105]
(b) Suppose that $P(A \mid B)=0.2, P\left(A \mid B^{c}\right)=0.3$ and $P(B)=0.8$ What is $P(A)$ ? [Montgomery and Runger, 2010, Q2-106]

## Solution:

(a)
(i) By definition, $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$. Therefore,

$$
P(A \cap B)=P(A \mid B) P(B)=0.4 \times 0.5=0.2 .
$$

(ii) $P\left(A^{c} \cap B\right)=P(B \backslash A)=P(B)-P(A \cap B)=0.5-0.2=0.3$.

Alternatively, one can apply the property $P\left(A^{c} \mid B\right)=1-P(A \mid B)$ to get

$$
P\left(A^{c} \cap B\right)=P\left(A^{c} \mid B\right) P(B)=(1-P(A \mid B)) P(B)=(1-0.4) \times 0.5=0.3
$$

(b) Method 1: By definition, $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$. Therefore,

$$
P(A \cap B)=P(A \mid B) P(B)=0.2 \times 0.8=0.16
$$

Next, from $P(B)=0.8$, we know that

$$
P\left(B^{c}\right)=1-P(B)=1-0.8=0.2 .
$$

By definition, $P\left(A \mid B^{c}\right)=\frac{P\left(A \cap B^{c}\right)}{P\left(B^{c}\right)}$. Therefore,

$$
P\left(A \cap B^{c}\right)=P\left(A \mid B^{c}\right) P\left(B^{c}\right)=0.3 \times 0.2=0.06
$$

Hence, $P(A)=P(A \cap B)+P\left(A \cap B^{c}\right)=0.16+0.16=0.22$.
Method 2: By the total probability formula, $P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)=$ $0.2 \times 0.8+0.3 \times(1-0.8)=0.22$.
Method 3: For those who are not seeking a "smart" way to solve this question, we can try the following:

Note that when we have two events, the sample space is always partitioned into four events: $A \cap B, A^{c} \cap B, A \cap B^{c}$, and $A^{c} \cap B^{c}$. (It might be helpful to draw the Venn diagram here.) Let's define their probabilities as $p_{1}, p_{2}, p_{3}$, and $p_{4}$, respectively. We are given three conditions which can then be turned into three equations. There is also one extra condition that $p_{1}+p_{2}+p_{3}+p_{4}=1$. Therefore, we have four equations with four unknowns. Applying some high-school algebra, we should be able to solve for $p_{1}$, $p_{2}, p_{3}$, and $p_{4}$. With these, we can calculate probability of any event. For example, $P(A)=p_{1}+p_{3}$.

Problem 3. Suppose that for the general population, 1 in 5000 people carries the human immunodeficiency virus (HIV). A test for the presence of HIV yields either a positive ( + ) or negative (-) response. Suppose the test gives the correct answer $99 \%$ of the time.
(a) What is $P(-\mid H)$, the conditional probability that a person tests negative given that the person does have the HIV virus?
(b) What is $P(H \mid+)$, the conditional probability that a randomly chosen person has the HIV virus given that the person tests positive?

## Solution:

(a) Because the test is correct $99 \%$ of the time,

$$
P(-\mid H)=P\left(+\mid H^{c}\right)=0.01 \text {. }
$$

(b) Using Bayes' formula, $P(H \mid+)=\frac{P(+\mid H) P(H)}{P(+)}$, where $P(+)$ can be evaluated by the total probability formula:

$$
P(+)=P(+\mid H) P(H)+P\left(+\mid H^{c}\right) P\left(H^{c}\right)=0.99 \times 0.0002+0.01 \times 0.9998
$$

Plugging this back into the Bayes' formula gives

$$
P(H \mid+)=\frac{0.99 \times 0.0002}{0.99 \times 0.0002+0.01 \times 0.9998} \approx 0.0194 .
$$

Thus, even though the test is correct $99 \%$ of the time, the probability that a random person who tests positive actually has HIV is less than $2 \%$. The reason this probability is so low is that the a priori probability that a person has HIV is very small.

Problem 4. Due to an Internet configuration error, packets sent from New York to Los Angeles are routed through El Paso, Texas with probability 3/4. Given that a packet is routed through El Paso, suppose it has conditional probability $1 / 3$ of being dropped. Given that a packet is not routed through El Paso, suppose it has conditional probability $1 / 4$ of being dropped. [Gubner, 2006, Ex.1.20]
(a) Find the probability that a packet is dropped.

Hint: Use total probability theorem.
(b) Find the conditional probability that a packet is routed through El Paso given that it is not dropped.
Hint: Use Bayes' theorem.

Solution: To solve this problem, we use the notation $E=\{$ routed through El Paso $\}$ and $D=\{$ packet is dropped $\}$. With this notation, it is easy to interpret the problem as telling us that

$$
P(D \mid E)=1 / 3, \quad P\left(D \mid E^{c}\right)=1 / 4, \quad \text { and } P(E)=3 / 4
$$

(a) By the law of total probability,

$$
\begin{aligned}
P(D) & =P(D \mid E) P(E)+P\left(D \mid E^{c}\right) P\left(E^{c}\right)=(1 / 3)(3 / 4)+(1 / 4)(1-3 / 4) \\
& =1 / 4+1 / 16=5 / 16=0.3125 .
\end{aligned}
$$

(b) $P\left(E \mid D^{c}\right)=\frac{P\left(E \cap D^{c}\right)}{P\left(D^{c}\right)}=\frac{P\left(D^{c} \mid E\right) P(E)}{P\left(D^{c}\right)}=\frac{(1-1 / 3)(3 / 4)}{1-5 / 16}=\frac{8}{11} \approx 0.7273$.

## Extra Questions

Here are some optional questions for those who want more practice.
Problem 5. Someone has rolled a fair dice twice. Suppose he tells you that "one of the rolls turned up a face value of six". What is the probability that the other roll turned up a six as well? [Tijms, 2007, Example 8.1, p. 244]

Hint: Note the followings:

- The answer is not $\frac{1}{6}$.
- Although there is no use of the word "given" or "conditioned on" in this question, the probability we seek is a conditional one. We have an extra piece of information because we know that the event "one of the rolls turned up a face value of six" has occurred.
- The question says "one of the rolls" without telling us which roll (the first or the second) it is referring to.

Solution: Let the sample space be the set $\{(i, j) \mid i, j=1, \ldots, 6\}$, where $i$ and $j$ denote the outcomes of the first and second rolls, respectively. They are all equally likely; so each has probability of $1 / 36$. The event of two sixes is given by $A=\{(6,6)\}$ and the event of at least one six is given by $B=(1,6), \ldots,(5,6),(6,6),(6,5), \ldots,(6,1)$. Applying the definition of conditional probability gives

$$
P(A \mid B)=P(A \cap B) / P(B)=\frac{1 / 36}{11 / 36} .
$$

Hence the desired probability is $1 / 11$.

## Problem 6.

(a) Suppose that $P(A \mid B)=1 / 3$ and $P\left(A \mid B^{c}\right)=1 / 4$. Find the range of the possible values for $P(A)$.
(b) Suppose that $C_{1}, C_{2}$, and $C_{3}$ partition $\Omega$. Furthermore, suppose we know that $P\left(A \mid C_{1}\right)=$ $1 / 3, P\left(A \mid C_{2}\right)=1 / 4$ and $P\left(A \mid C_{3}\right)=1 / 5$. Find the range of the possible values for $P(A)$.

Solution: First recall the total probability theorem: Suppose we have a collection of events $B_{1}, B_{2}, \ldots, B_{n}$ which partitions $\Omega$. Then,

$$
\begin{aligned}
P(A) & =P\left(A \cap B_{1}\right)+P\left(A \cap B_{2}\right)+\cdots P\left(A \cap B_{n}\right) \\
& =P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+\cdots P\left(A \mid B_{n}\right) P\left(B_{n}\right)
\end{aligned}
$$

(a) Note that $B$ and $B^{c}$ partition $\Omega$. So, we can apply the total probability theorem:

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)=\frac{1}{3} P(B)+\frac{1}{4}(1-P(B)) .
$$

You may check that, by varying the value of $P(B)$ from 0 to 1 , we can get the value of $P(A)$ to be any number in the range $\left[\frac{1}{4}, \frac{1}{3}\right]$. Technically, we can not use $P(B)=0$ because that would make $P(A \mid B)$ not well-defined. Similarly, we can not use $P(B)=$ 1 because that would mean $P\left(B^{c}\right)=0$ and hence make $P\left(A \mid B^{c}\right)$ not well-defined. Therfore, the range of $P(A)$ is $\left(\frac{1}{4}, \frac{1}{3}\right)$.

Note that larger value of $P(A)$ is not possible because

$$
P(A)=\frac{1}{3} P(B)+\frac{1}{4}(1-P(B))<\frac{1}{3} P(B)+\frac{1}{3}(1-P(B))=\frac{1}{3} .
$$

Similarly, smaller value of $P(A)$ is not possible because

$$
P(A)=\frac{1}{3} P(B)+\frac{1}{4}(1-P(B))>\frac{1}{4} P(B)+\frac{1}{3}(1-P(B))=\frac{1}{4} .
$$

(b) Again, we apply the total probability theorem:

$$
\begin{aligned}
P(A) & =P\left(A \mid C_{1}\right) P\left(C_{1}\right)+P\left(A \mid C_{2}\right) P\left(C_{2}\right)+P\left(A \mid C_{3}\right) P\left(C_{3}\right) \\
& =\frac{1}{3} P\left(C_{1}\right)+\frac{1}{4} P\left(C_{2}\right)+\frac{1}{5} P\left(C_{3}\right) .
\end{aligned}
$$

Because $C_{1}, C_{2}$, and $C_{3}$ partition $\Omega$, we know that $P\left(C_{1}\right)+P\left(C_{2}\right)+P\left(C_{3}\right)=1$. Now,

$$
P(A)=\frac{1}{3} P\left(C_{1}\right)+\frac{1}{4} P\left(C_{2}\right)+\frac{1}{5} P\left(C_{3}\right)<\frac{1}{3} P\left(C_{1}\right)+\frac{1}{3} P\left(C_{2}\right)+\frac{1}{3} P\left(C_{3}\right)=\frac{1}{3} .
$$

Similarly,

$$
P(A)=\frac{1}{3} P\left(C_{1}\right)+\frac{1}{4} P\left(C_{2}\right)+\frac{1}{5} P\left(C_{3}\right)>\frac{1}{5} P\left(C_{1}\right)+\frac{1}{5} P\left(C_{2}\right)+\frac{1}{5} P\left(C_{3}\right)=\frac{1}{5} .
$$

Therefore, $P(A)$ must be inside $\left(\frac{1}{5}, \frac{1}{3}\right)$.
You may check that any value of $P(A)$ in the range $\left(\frac{1}{5}, \frac{1}{3}\right)$ can be obtained by first setting the value of $P\left(C_{2}\right)$ to be close to 0 and varying the value of $P\left(C_{1}\right)$ from 0 to 1 .

