ECS 315: Probability and Random Processes 2018/1 HW 11 - Due: Not Due

Lecturer: Prapun Suksompong, Ph.D.

Problem 1 (Yates and Goodman, 2005, Q3.4.5). X is a continuous uniform RV on the interval $(-5,5)$.
(a) What is its pdf $f_{X}(x)$?
(b) What is its cdf $F_{X}(x)$?
(c) What is $\mathbb{E}[X]$?
(d) What is $\mathbb{E}\left[X^{5}\right]$?
(e) What is $\mathbb{E}\left[e^{X}\right]$?

Problem 2 (Randomly Phased Sinusoid). Suppose Θ is a uniform random variable on the interval $(0,2 \pi)$.
(a) Consider another random variable X defined by

$$
X=5 \cos (7 t+\Theta)
$$

where t is some constant. Find $\mathbb{E}[X]$.
(b) Consider another random variable Y defined by

$$
Y=5 \cos \left(7 t_{1}+\Theta\right) \times 5 \cos \left(7 t_{2}+\Theta\right)
$$

where t_{1} and t_{2} are some constants. Find $\mathbb{E}[Y]$.

Problem 3. A random variable X is a Gaussian random variable if its pdf is given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}}
$$

for some constant m and positive number σ. Furthermore, when a Gaussian random variable has $m=0$ and $\sigma=1$, we say that it is a standard Gaussian random variable. There is no closed-form expression for the cdf of the standard Gaussian random variable. The cdf itself is denoted by Φ and its values (or its complementary values $Q(\cdot)=1-\Phi(\cdot)$) are traditionally provided by a table.

Suppose Z is a standard Gaussian random variable.
(a) Use the Φ table to find the following probabilities:
(i) $P[Z<1.52]$
(ii) $P[Z<-1.52]$
(iii) $P[Z>1.52]$
(iv) $P[Z>-1.52]$
(v) $P[-1.36<Z<1.52]$
(b) Use the Φ table to find the value of c that satisfies each of the following relation.
(i) $P[Z>c]=0.14$
(ii) $P[-c<Z<c]=0.95$

Problem 4. The peak temperature T, as measured in degrees Fahrenheit, on a July day in New Jersey is a $\mathcal{N}(85,100)$ random variable.

Remark: Do not forget that, for our class, the second parameter in $\mathcal{N}(\cdot, \cdot)$ is the variance (not the standard deviation).
(a) Express the cdf of T in terms of the Φ function.
(b) Express each of the following probabilities in terms of the Φ function(s). Make sure that the arguments of the Φ functions are positive. (Positivity is required so that we can directly use the Φ / Q tables to evaluate the probabilities.)
(i) $P[T>100]$
(ii) $P[T<60]$
(iii) $P[70 \leq T \leq 100]$
(c) Express each of the probabilities in part (b) in terms of the Q function(s). Again, make sure that the arguments of the Q functions are positive.
(i) $P[T>100]$
(ii) $P[T<60]$
(iii) $P[70 \leq T \leq 100]$
(d) Evaluate each of the probabilities in part (b) using the Φ / Q tables.
(i) $P[T>100]$
(ii) $P[T<60]$
(iii) $P[70 \leq T \leq 100]$
(e) Observe that the Φ table ("Table 4" from the lecture) stops at $z=2.99$ and the Q table ("Table 5" from the lecture) starts at $z=3.00$. Why is it better to give a table for $Q(z)$ instead of $\Phi(z)$ when z is large?

Problem 5. Suppose that the time to failure (in hours) of fans in a personal computer can be modeled by an exponential distribution with $\lambda=0.0003$.
(a) What proportion of the fans will last at least 10,000 hours?
(b) What proportion of the fans will last at most 7000 hours?
[Montgomery and Runger, 2010, Q4-97]

